Finite Element Methods on Very Large, Dynamic Tubular Grid Encoded Implicit Surfaces

The simulation of physical processes on interfaces and a variety of applications in geometry processing and geometric modeling are based on the solution of partial differential equations on curved and evolving surfaces. Frequently, an implicit level set type representation of these surfaces is the most effective and computationally advantageous approach. This paper addresses the computational problem of how to solve partial differential equations on highly resolved level sets with an underlying very high-resolution discrete grid. These high-resolution grids are represented in a very efficient dynamic tubular grid encoding format for a narrow band. A reaction diffusion model on a fixed surface and surface evolution driven by a nonlinear geometric diffusion approach, by isotropic or truly anisotropic curvature motion, are investigated as characteristic model problems. The proposed methods are based on semi-implicit finite element discretizations directly on these narrow bands, require only standard numerical quadrature, and allow for large time steps. To combine large time steps with a very thin and thus storage inexpensive narrow band, suitable transparent boundary conditions on the boundary of the narrow band and a nested iteration scheme in each time step are investigated. This nested iteration scheme enables the discrete interfaces to move in a single time step significantly beyond the domain of the narrow band of the previous time step. Furthermore, algorithmic tools are provided to assemble finite element matrices and to apply matrix vector operators via fast, cache-coherent access to the dynamic tubular grid encoded data structure. The consistency of the presented approach is evaluated, and various numerical examples show its application potential.

[1]  Martin Rumpf,et al.  Robust feature detection and local classification for surfaces based on moment analysis , 2004, IEEE Transactions on Visualization and Computer Graphics.

[2]  Ross T. Whitaker,et al.  A Streaming Narrow-Band Algorithm: Interactive Computation and Visualization of Level Sets , 2004, IEEE Trans. Vis. Comput. Graph..

[3]  A. Söderström,et al.  Euclidian Distance Transform Algorithms : A comparative study , 2007 .

[4]  Robert Michael Kirby,et al.  Advanced Reaction-Diffusion Models for Texture Synthesis , 2006, J. Graph. Tools.

[5]  M. Burger,et al.  Level set methods for geometric inverse problems in linear elasticity , 2004 .

[6]  S. Osher,et al.  Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .

[7]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[8]  P. Giblin Computational geometry: algorithms and applications (2nd edn.), by M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf. Pp. 367. £20.50. 2000. ISBN 3 540 65620 0 (Springer-Verlag). , 2001, The Mathematical Gazette.

[9]  Rachid Deriche,et al.  A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape , 2007, International Journal of Computer Vision.

[10]  Gerhard Dziuk,et al.  CONVERGENCE OF NUMERICAL SCHEMES FOR THE APPROXIMATION OF LEVEL SET SOLUTIONS TO MEAN CURVATURE FLOW , 2001 .

[11]  Guillermo Sapiro,et al.  Fourth order partial differential equations on general geometries , 2006, J. Comput. Phys..

[12]  S. Osher,et al.  A PDE-Based Fast Local Level Set Method 1 , 1998 .

[13]  David E. Breen,et al.  Algorithms for Interactive Editing of Level Set Models , 2005, Comput. Graph. Forum.

[14]  Ross T. Whitaker,et al.  A Fast Iterative Method for Eikonal Equations , 2008, SIAM J. Sci. Comput..

[15]  J. Sethian,et al.  A level set approach to a unified model for etching, deposition, and lithography II: three-dimensional simulations , 1995 .

[16]  John B. Greer,et al.  An Improvement of a Recent Eulerian Method for Solving PDEs on General Geometries , 2006, J. Sci. Comput..

[17]  J. Sethian,et al.  A Level Set Approach to a Unified Model for Etching, Deposition, and Lithography III: Re-Deposition, , 1997 .

[18]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[19]  Martin Rumpf,et al.  A Level Set Method for Anisotropic Geometric Diffusion in 3D Image Processing , 2002, SIAM J. Appl. Math..

[20]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[21]  C. M. Elliott,et al.  Surface Finite Elements for Parabolic Equations , 2007 .

[22]  Greg Turk,et al.  Re-tiling polygonal surfaces , 1992, SIGGRAPH.

[23]  M. Burger Finite element approximation of elliptic partial differential equations on implicit surfaces , 2009 .

[24]  Ken Museth,et al.  Hierarchical RLE level set: A compact and versatile deformable surface representation , 2006, TOGS.

[25]  B. Andrews,et al.  Volume-Preserving Anisotropic Mean Curvature Flow , 2001 .

[26]  J. Sethian,et al.  A Fast Level Set Method for Propagating Interfaces , 1995 .

[27]  Ken Museth,et al.  Dynamic Tubular Grid: An Efficient Data Structure and Algorithms for High Resolution Level Sets , 2006, J. Sci. Comput..

[28]  Ronald Fedkiw,et al.  Nonconvex rigid bodies with stacking , 2003, ACM Trans. Graph..

[29]  Guillermo Sapiro,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: Bye Bye Triangulated Surfaces? , 2003 .

[30]  Ronald N. Perry,et al.  Simple and Efficient Traversal Methods for Quadtrees and Octrees , 2002, J. Graphics, GPU, & Game Tools.

[31]  J. Strain Semi-Lagrangian Methods for Level Set Equations , 1999 .

[32]  J. Strain Tree Methods for Moving Interfaces , 1999 .

[33]  A. Reusken,et al.  A finite element based level set method for two-phase incompressible flows , 2006 .

[34]  H. Stone A simple derivation of the time‐dependent convective‐diffusion equation for surfactant transport along a deforming interface , 1990 .

[35]  Fabio Nobile,et al.  Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .

[36]  Arie E. Kaufman,et al.  Parallel Spatial Enumeration of Implicit Surfaces Using Interval Arithmetic for Octree Generation an , 1998 .

[37]  Chohong Min Local level set method in high dimension and codimension , 2004 .

[38]  E. Guendelman,et al.  Efficient simulation of large bodies of water by coupling two and three dimensional techniques , 2006, SIGGRAPH 2006.

[39]  M. Burger A framework for the construction of level set methods for shape optimization and reconstruction , 2003 .

[40]  Ronald Fedkiw,et al.  Simulating water and smoke with an octree data structure , 2004, ACM Trans. Graph..

[41]  F. Bornemann,et al.  Finite-element Discretization of Static Hamilton-Jacobi Equations based on a Local Variational Principle , 2004, math/0403517.

[42]  Charles M. Elliott,et al.  An h-narrow band finite-element method for elliptic equations on implicit surfaces , 2010 .

[43]  S. Osher,et al.  Geometric Level Set Methods in Imaging, Vision, and Graphics , 2011, Springer New York.

[44]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[45]  G. Dziuk,et al.  An algorithm for evolutionary surfaces , 1990 .

[46]  Klaus Deckelnick,et al.  A Phase-Field Model for Diffusion-Induced Grain Boundary Motion , 2001 .

[47]  Gerhard Dziuk,et al.  A fully discrete numerical scheme for weighted mean curvature flow , 2002, Numerische Mathematik.

[48]  Li Ge-wen Fast Tree-Based Redistancing for Level Set Computations , 2003 .

[49]  Der Fakult,et al.  On Variational Problems and Gradient Flows in Image Processing , 2005 .

[50]  J. Strain A Fast Modular Semi-Lagrangian Method for Moving Interfaces , 2000 .

[51]  W. J. Freeman,et al.  Alan Turing: The Chemical Basis of Morphogenesis , 1986 .

[52]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[53]  C. M. Elliott,et al.  Computation of geometric partial differential equations and mean curvature flow , 2005, Acta Numerica.

[54]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[55]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[56]  Martin Rumpf,et al.  An Adaptive Level Set Method for Medical Image Segmentation , 2001, IPMI.

[57]  Frank Losasso,et al.  A fast and accurate semi-Lagrangian particle level set method , 2005 .

[58]  A. J. Roberts,et al.  A lubrication model of coating flows over a curved substrate in space , 1997, Journal of Fluid Mechanics.

[59]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[60]  Ronald Fedkiw,et al.  A level set method for thin film epitaxial growth , 2001 .

[61]  Ross T. Whitaker,et al.  Anisotropic Curvature Motion for Structure Enhancing Smoothing of 3D MR Angiography Data , 2007, Journal of Mathematical Imaging and Vision.

[62]  J. Lowengrub,et al.  A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant , 2004 .

[63]  S. Osher,et al.  Spatially adaptive techniques for level set methods and incompressible flow , 2006 .

[64]  Peter Smereka,et al.  Semi-Implicit Level Set Methods for Curvature and Surface Diffusion Motion , 2003, J. Sci. Comput..

[65]  Ross T. Whitaker,et al.  A Level-Set Approach to 3D Reconstruction from Range Data , 1998, International Journal of Computer Vision.

[66]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[67]  D. M,et al.  A level set formulation for Willmore flow , 2004 .