Self-referential basis of undecidable dynamics: from The Liar Paradox and The Halting Problem to The Edge of Chaos

In this paper we explore several fundamental relations between formal systems, algorithms, and dynamical systems, focussing on the roles of undecidability, universality, diagonalization, and self-reference in each of these computational frameworks. Some of these interconnections are well-known, while some are clarified in this study as a result of a fine-grained comparison between recursive formal systems, Turing machines, and Cellular Automata (CAs). In particular, we elaborate on the diagonalization argument applied to distributed computation carried out by CAs, illustrating the key elements of Gödel's proof for CAs. The comparative analysis emphasizes three factors which underlie the capacity to generate undecidable dynamics within the examined computational frameworks: (i) the program-data duality; (ii) the potential to access an infinite computational medium; and (iii) the ability to implement negation. The considered adaptations of Gödel's proof distinguish between computational universality and undecidability, and show how the diagonalization argument exploits, on several levels, the self-referential basis of undecidability.

[1]  S. Markose Novelty in complex adaptive systems (CAS) dynamics: a computational theory of actor innovation , 2004 .

[2]  Matthew Cook,et al.  A Concrete View of Rule 110 Computation , 2009, CSP.

[3]  James B. Morris Formal Languages and their Relation to Automata , 1970 .

[4]  Charles H. Bennett Undecidable dynamics , 1990, Nature.

[5]  Andrew Wuensche,et al.  Classifying cellular automata automatically: Finding gliders, filtering, and relating space-time patterns, attractor basins, and the Z parameter , 1998, Complex..

[6]  Enrico Formenti,et al.  On undecidability of equicontinuity classification for cellular automata , 2003, DMCS.

[7]  Alfred Tarski,et al.  Der Wahrheitsbegriff in den formalisierten Sprachen , 1935 .

[8]  P. Kurka Languages, equicontinuity and attractors in cellular automata , 1997, Ergodic Theory and Dynamical Systems.

[9]  J. Crutchfield,et al.  Upper bound on the products of particle interactions in cellular automata , 2000, nlin/0008038.

[10]  Yoshihiro Mizoguchi,et al.  A Formulation of Composition for Cellular Automata on Groups , 2014, IEICE Trans. Inf. Syst..

[11]  Wilfried Sieg,et al.  Automated search for Gödel's proofs , 2005, Ann. Pure Appl. Log..

[12]  E. Berlekamp,et al.  Winning Ways for Your Mathematical Plays , 1983 .

[13]  Richard Zach Kurt Gödel , ‘ Über formal unentscheidbare Sätze der Principia mathematica und verwandter Systeme I ’ ( 1931 ) , 2003 .

[14]  N. Goldenfeld,et al.  Coarse-graining of cellular automata, emergence, and the predictability of complex systems. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Olga Bandman,et al.  Cellular Automata Composition Techniques for Spatial Dynamics Simulation , 2010, Simulating Complex Systems by Cellular Automata.

[16]  Albert Y. Zomaya,et al.  Coherent information structure in complex computation , 2012, Theory in Biosciences.

[17]  Leon Hirsch,et al.  Cellular Automata A Discrete Universe , 2016 .

[18]  Mikhail Prokopenko,et al.  Grand Challenges for Computational Intelligence , 2014, Front. Robot. AI.

[19]  Allen H. Brady The busy beaver game and the meaning of life , 1988 .

[20]  Saharon Shelah,et al.  On the Classifiability of Cellular Automata , 1998, Theor. Comput. Sci..

[21]  R. Herken,et al.  A half-century survey on The Universal Turing Machine , 1988 .

[22]  Ken Binmore,et al.  Modeling rational players I , 1987 .

[23]  James P. Crutchfield,et al.  Computation at the Onset of Chaos , 1991 .

[24]  Albert Y. Zomaya,et al.  Local measures of information storage in complex distributed computation , 2012, Inf. Sci..

[25]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .

[26]  Bernd Buldt On Fixed Points, Diagonalization, and Self-Reference , 2016 .

[27]  R. Smullyan Theory of formal systems , 1962 .

[28]  Eitan M. Gurari,et al.  Introduction to the theory of computation , 1989 .

[29]  J. Crutchfield The calculi of emergence: computation, dynamics and induction , 1994 .

[30]  Sheri M Markose,et al.  Complex Type 4 Structure Changing Dynamics of Digital Agents: Nash Equilibria of a Game with Arms Race in Innovations , 2017 .

[31]  C. Allen,et al.  Stanford Encyclopedia of Philosophy , 2011 .

[32]  James P. Crutchfield,et al.  Dynamics, computation, and the “edge of chaos”: a re-examination , 1993, adap-org/9306003.

[33]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[34]  Hector Zenil,et al.  Computation and Universality: Class IV versus Class III Cellular Automata , 2013, J. Cell. Autom..

[35]  Mikhail Prokopenko,et al.  Information Dynamics in Small-World Boolean Networks , 2011, Artificial Life.

[36]  Kate Cummings,et al.  Introduction to the Theory , 2015 .

[37]  E. Schrödinger,et al.  What is life? : the physical aspect of the living cell , 1946 .

[38]  W. Rapaport Philosophy of Computer Science: An Introductory Course , 2005 .

[39]  Matthew Cook,et al.  Universality in Elementary Cellular Automata , 2004, Complex Syst..

[40]  Robert A. Meyers Computational complexity : theory, techniques, and applications , 2012 .

[41]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[42]  Ken Binmore,et al.  Modeling Rational Players: Part I , 1987, Economics and Philosophy.

[43]  Master Gardener,et al.  Mathematical games: the fantastic combinations of john conway's new solitaire game "life , 1970 .

[44]  J. Heaton GÖDEL'S PROOF , 1960 .

[45]  Hava T. Siegelmann,et al.  Neural networks and analog computation - beyond the Turing limit , 1999, Progress in theoretical computer science.

[46]  Franco Bagnoli,et al.  Cellular Automata , 2002, Lecture Notes in Computer Science.

[47]  Mats G. Nordahl,et al.  Universal Computation in Simple One-Dimensional Cellular Automata , 1990, Complex Syst..

[48]  Sweden. Sekretariatet för framtidsstudier,et al.  Beyond Belief: Randomness, Prediction and Explanation in Science , 1990 .

[49]  Minoru Asada,et al.  Information processing in echo state networks at the edge of chaos , 2011, Theory in Biosciences.

[50]  Mikhail Prokopenko,et al.  An information-theoretic primer on complexity, self-organization, and emergence , 2009, Complex..

[51]  Albert Y. Zomaya,et al.  Local information transfer as a spatiotemporal filter for complex systems. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  Moore,et al.  Unpredictability and undecidability in dynamical systems. , 1990, Physical review letters.

[53]  Ken Binmore,et al.  Modeling Rational Players: Part II , 1987, Economics and Philosophy.

[54]  Stephen Wolfram,et al.  A New Kind of Science , 2003, Artificial Life.

[55]  Jarkko Kari Decidability and undecidability in cellular automata , 2012, Int. J. Gen. Syst..

[56]  Alvy Ray Smith,et al.  Simple Computation-Universal Cellular Spaces , 1971, JACM.

[57]  R. Carnap Logische Syntax der Sprache , 1935 .

[58]  Alaa A. Kharbouch,et al.  Three models for the description of language , 1956, IRE Trans. Inf. Theory.

[59]  Haim Gaifman The Easy Way to Gödel ’ s Proof and Related Matters , 2005 .

[60]  S. Wolfram Twenty Problems in the Theory of Cellular Automata , 1985 .

[61]  Karel Culik,et al.  A Simple Universal Cellular Automaton and its One-Way and Totalistic Version , 1987, Complex Syst..

[62]  Klaus Sutner,et al.  Computational classification of cellular automata , 2012, Int. J. Gen. Syst..

[63]  Karel Culik,et al.  Undecidability of CA Classification Schemes , 1988, Complex Syst..

[64]  C. Moore,et al.  Automatic filters for the detection of coherent structure in spatiotemporal systems. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  Klaus Sutner,et al.  Computation theory of cellular automata , 1998 .

[66]  G. Bezhanishvili GÖDEL’S INCOMPLETENESS THEOREMS , 2019, Infinity and the Mind.

[67]  Michael A. Arbib,et al.  From universal Turing machines to self-reproduction , 1988 .

[68]  Raymond M. Smullyan Fixed points and self-reference , 1984 .

[69]  Syed Mustafa Ali The concept of Poiesis and its application in a Heideggarian critique of computationally emergent artificiality , 1999 .

[70]  Michael Harré,et al.  Utility, Revealed Preferences Theory, and Strategic Ambiguity in Iterated Games , 2017, Entropy.

[71]  Christopher G. Langton,et al.  Computation at the edge of chaos: Phase transitions and emergent computation , 1990 .

[72]  John L. Casti,et al.  Complexification: Explaining a Paradoxical World Through the Science of Surprise , 1994 .

[73]  E. Schrödinger What Is Life , 1946 .

[74]  Cristopher Moore,et al.  Generalized shifts: unpredictability and undecidability in dynamical systems , 1991 .

[75]  John L. Casti,et al.  Chaos, Gödel, and Truth , 2018 .

[76]  Jean-Charles Delvenne,et al.  Decidability and Universality in Symbolic Dynamical Systems , 2004, Fundam. Informaticae.

[77]  Albert Y. Zomaya,et al.  The Information Dynamics of Phase Transitions in Random Boolean Networks , 2008, ALIFE.

[78]  Klaus Sutner Cellular Automata, Classification of , 2009, Encyclopedia of Complexity and Systems Science.

[79]  Haim Gaifman,et al.  Naming and Diagonalization, from Cantor to Gödel to Kleene , 2006, Log. J. IGPL.

[80]  Raymond M. Smullyan,et al.  Godel's Incompleteness Theorems , 1992 .