Random walk on a random walk

The authors investigate the random walk of a particle on a one-dimensional chain which has been constructed by a random-walk procedure. Exact expressions are given for the mean-square displacement and the fourth moment after n steps. The probability density after n steps is derived in the saddle-point approximation, for large n. These quantities have also been studied by numerical simulation. The extension to continuous time has been made where the particle jumps according to a Poisson process. The exact solution for the self-correlation function has been obtained in the Fourier and Laplace domain. The resulting frequency-dependent diffusion coefficient and incoherent dynamical structure factor have been discussed. The model of random walk on a random walk is applied to self-diffusion in the concentrated one-dimensional lattice gas where the correct asymptotic behavior is found.