Use of rapid microwave sintering technique for the processing of magnesium-hydroxyapatite composites

[1]  M. Koç,et al.  Review of magnesium-based biomaterials and their applications , 2018 .

[2]  Frank Feyerabend,et al.  Magnesium degradation under physiological conditions – Best practice , 2018, Bioactive materials.

[3]  K. Ou,et al.  Effect of Hydroxyapatite on the Mechanical Properties and Corrosion Behavior of Mg-Zn-Y Alloy , 2017, Materials.

[4]  S. J. Hosseinipour,et al.  Microstructural Characterization of Mg-SiC Nanocomposite Powders Fabricated by High Energy Mechanical Milling , 2017, Silicon.

[5]  Y. Zhang,et al.  Effect of trace HA on microstructure, mechanical properties and corrosion behavior of Mg-2Zn-0.5Sr alloy , 2017 .

[6]  Meysam Haghshenas,et al.  Mechanical characteristics of biodegradable magnesium matrix composites: A review , 2017 .

[7]  M. Sivapragash,et al.  MECHANICAL PERFORMANCE OF MAGNESIUM COMPOSITES CONTAINING HYBRID Al2O3 REINFORCEMENT , 2017 .

[8]  Wei Li,et al.  Characterization of biomedical hydroxyapatite/magnesium composites prepared by powder metallurgy assisted with microwave sintering , 2016 .

[9]  Yong Zhu,et al.  Mechanical and biological properties of bioglass/magnesium composites prepared via microwave sintering route , 2016 .

[10]  R. Kumar,et al.  An investigation on effect of heating mode and temperature on sintering of Fe-P alloys , 2016 .

[11]  M. Prakasam,et al.  Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review , 2015, Journal of functional biomaterials.

[12]  Hong Wu,et al.  Powder metallurgical low-modulus Ti-Mg alloys for biomedical applications. , 2015, Materials science & engineering. C, Materials for biological applications.

[13]  R. Akid,et al.  Improving the corrosion resistance of AZ91D magnesium alloy through reinforcement with titanium carbides and borides , 2015 .

[14]  L. Junwei,et al.  The effect of microstructure and the related bio-corrosion behavior of AZ91D Mg alloy in SBF artificial body fluid , 2015 .

[15]  César Augusto Stüpp,et al.  Powder Metallurgical Synthesis of Biodegradable Mg-Hydroxyapatite Composites for Biomedical Applications , 2015 .

[16]  S. Mohajernia,et al.  Modified nanostructured hydroxyapatite coating to control the degradation of magnesium alloy AZ31 in simulated body fluid , 2015 .

[17]  C Ganapathy,et al.  Processing and mechanical behavior of lamellar structured degradable magnesium-hydroxyapatite implants. , 2014, Journal of the mechanical behavior of biomedical materials.

[18]  M. Medraj,et al.  In-vitro corrosion inhibition mechanism of fluorine-doped hydroxyapatite and brushite coated Mg–Ca alloys for biomedical applications , 2014 .

[19]  J. Lewandowski,et al.  Effects of particulate volume fraction on cyclic stress response and fatigue life of AZ91D magnesium alloy metal matrix composites , 2014 .

[20]  A. Atrian,et al.  Mechanical and microstructural characterization of Al7075/SiC nanocomposites fabricated by dynamic compaction , 2014, International Journal of Minerals, Metallurgy, and Materials.

[21]  E. Champion Sintering of calcium phosphate bioceramics. , 2013, Acta biomaterialia.

[22]  A. Borrell,et al.  Microwave Sintering of Zirconia Materials: Mechanical and Microstructural Properties , 2013 .

[23]  X. Ma,et al.  Microstructure, mechanical property and corrosion behavior of interpenetrating (HA+β-TCP)/MgCa composite fabricated by suction casting. , 2013, Materials science & engineering. C, Materials for biological applications.

[24]  R. Bao,et al.  Effects of microwave sintering temperature and soaking time on microstructure of WC–8Co , 2013 .

[25]  S. Ramesh,et al.  Sintering properties of hydroxyapatite powders prepared using different methods , 2013 .

[26]  A. Nemati,et al.  Microwave assisted synthesis & properties of nano HA-TCP biphasic calcium phosphate , 2012, International Journal of Minerals, Metallurgy, and Materials.

[27]  T. Ebel,et al.  Properties of Sintered Mg Alloys for Biomedical Applications , 2011 .

[28]  J. Chan,et al.  Mechanical property retention in remelted microparticle to nanoparticle AZ31/Al2O3 composites , 2010 .

[29]  Yong Han,et al.  The microstructure, mechanical and corrosion properties of calcium polyphosphate reinforced ZK60A magnesium alloy composites , 2010 .

[30]  K. Hong,et al.  Microstructure and mechanical properties of Mg-HAP composites , 2010 .

[31]  Morteza Oghbaei,et al.  Microwave versus Conventional Sintering: A Review of Fundamentals, Advantages and Applications , 2010 .

[32]  I. Zalite,et al.  Microwave sintering of fine grained HAP and HAP/TCP bioceramics , 2010 .

[33]  J. Gray-Munro,et al.  The mechanism of deposition of calcium phosphate coatings from solution onto magnesium alloy AZ31. , 2009, Journal of biomedical materials research. Part A.

[34]  R. Kiminami,et al.  Microwave sintering of alumina–zirconia nanocomposites , 2008 .

[35]  M. Wei,et al.  Corrosion process of pure magnesium in simulated body fluid , 2008 .

[36]  Yufeng Zheng,et al.  The development of binary Mg-Ca alloys for use as biodegradable materials within bone. , 2008, Biomaterials.

[37]  M. Gupta,et al.  Improving mechanical properties of magnesium using nano-yttria reinforcement and microwave assisted powder metallurgy method , 2007 .

[38]  Shizhe Song,et al.  A Possible Biodegradable Magnesium Implant Material , 2007 .

[39]  Tadashi Kokubo,et al.  How useful is SBF in predicting in vivo bone bioactivity? , 2006, Biomaterials.

[40]  Alexis M Pietak,et al.  Magnesium and its alloys as orthopedic biomaterials: a review. , 2006, Biomaterials.

[41]  R. Roy,et al.  Microwave sintering of Ni–Zn ferrites: comparison with conventional sintering , 2003 .

[42]  H. Varma,et al.  Microwave sintering of nanosized hydroxyapatite powder compacts , 2002 .

[43]  R. Roy,et al.  Microwave sintering of transparent alumina , 2002 .

[44]  R. Roy,et al.  Microwave sintering and mechanical properties of PM copper steel , 2001 .

[45]  S. Ramesh,et al.  Effects of Sintering Temperature on the Properties of Hydroxyapatite , 2000 .