Analytic functional calculus and G\r{a}rding inequality on graded Lie groups with applications to diffusion equations

In this paper we study the Cauchy problem for diffusion equations associated to a class of strongly hypoelliptic pseudo-differential operators on graded Lie groups. To do so, we develop a global complex functional calculus on graded Lie groups in order to analyse the corresponding energy estimates. One of the main aspects of this complex functional calculus is that for the pρ, δq-Euclidean Hörmander classes we recover the standard functional calculus developed by Seeley [38]. In consequence the G̊arding inequality that we prove for arbitrary graded Lie groups absorbs the historical 1953’s inequality due to G̊arding [26].

[1]  Michael Ruzhansky,et al.  $L^{p}$ -BOUNDS FOR PSEUDO-DIFFERENTIAL OPERATORS ON COMPACT LIE GROUPS , 2016, Journal of the Institute of Mathematics of Jussieu.

[2]  E. Stein,et al.  Hypoelliptic differential operators and nilpotent groups , 1976 .

[3]  Gerd Grubb,et al.  Integration by parts for nonsymmetric fractional-order operators on a halfspace , 2020, Journal of Mathematical Analysis and Applications.

[4]  Nick Laskin Principles of Fractional Quantum Mechanics , 2010 .

[5]  Michael Ruzhansky,et al.  Global functional calculus, lower/upper bounds and evolution equations on manifolds with boundary , 2021, Advances in Operator Theory.

[6]  Elias M. Stein,et al.  Hardy spaces on homogeneous groups , 1982 .

[7]  $$L^p$$-Bounds for Pseudo-differential Operators on Graded Lie Groups , 2019, 1911.03397.

[8]  Meinhard E. Mayer,et al.  Navier-Stokes Equations and Turbulence , 2008 .

[9]  On a class of hyperbolic equations in Weyl–Hörmander calculus , 2016 .

[10]  Rupert L. Frank,et al.  Hypercontractivity of the semigroup of the fractional Laplacian on the n-sphere , 2021 .

[11]  L. Gårding Dirichlet's problem for linear elliptic partial differential equations , 1953 .

[12]  M. Czubak,et al.  PSEUDODIFFERENTIAL OPERATORS , 2020, Introduction to Partial Differential Equations.

[13]  Marco Cannone,et al.  Mathematical Foundation of Turbulent Viscous Flows , 2006 .

[14]  J. Dyer A nilpotent Lie algebra with nilpotent automorphism group , 1970 .

[15]  R. Schilling Financial Modelling with Jump Processes , 2005 .

[16]  G. Grubb Fractional-order operators: Boundary problems, heat equations , 2017, 1712.01196.

[17]  Joseph J. Kohn,et al.  An algebra of pseudo‐differential operators , 1965 .

[18]  J. Dixmier Formes linéaires sur un anneau d'opérateurs , 1953 .

[19]  S. Bhattacharyya,et al.  Inverse problems for the fractional-Laplacian with lower order non-local perturbations , 2021, Transactions of the American Mathematical Society.

[20]  Derek W. Robinson,et al.  Spectral estimates for positive Rockland operators , 1994 .

[21]  J. Delgado EstimationsLp pour une classe d’opérateurs pseudo-différentiels dans le cadre du calcul de Weyl-Hörmander , 2006 .

[22]  C. Fermanian-Kammerer,et al.  Defect measures on graded Lie groups , 2017, ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE.

[23]  Mohammed Kbiri Alaoui,et al.  On Degenerate Parabolic Equations , 2011, Int. J. Math. Math. Sci..

[24]  On the Well-Posedness for a Class of Pseudo-Differential Parabolic Equations , 2018 .

[25]  Homogeneous Lie algebras and expanding automorphisms , 1975 .

[26]  Robert T. Seeley,et al.  Complex powers of an elliptic operator , 1967 .

[27]  Akira Ogawa,et al.  Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics , 2002 .

[28]  Michael Ruzhansky,et al.  Lower bounds for operators on graded Lie groups , 2013, 1301.0642.

[29]  N. Laskin,et al.  Fractional quantum mechanics , 2008, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  Lp bounds in S(m, g)-calculus , 2016 .

[31]  Michael Ruzhansky,et al.  SOBOLEV SPACES ON GRADED GROUPS , 2013, 1311.0192.

[32]  Michael Ruzhansky,et al.  Quantization on Nilpotent Lie Groups , 2016 .

[33]  Super poly-harmonic properties, Liouville theorems and classification of nonnegative solutions to equations involving higher-order fractional Laplacians , 2019, 1905.04300.

[34]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[35]  Michael Ruzhansky,et al.  Global functional calculus for operators on compact Lie groups , 2013, 1307.1464.