Nonlinear Model Order Reduction via Dynamic Mode Decomposition

We propose a new technique for obtaining reduced order models for nonlinear dynamical systems. Specifically, we advocate the use of the recently developed Dynamic Mode Decomposition (DMD), an equation-free method, to approximate the nonlinear term. DMD is a spatio-temporal matrix decomposition of a data matrix that correlates spatial features while simultaneously associating the activity with periodic temporal behavior. With this decomposition, one can obtain a fully reduced dimensional surrogate model and avoid the evaluation of the nonlinear term in the online stage. This allows for an impressive speed up of the computational cost, and, at the same time, accurate approximations of the problem. We present a suite of numerical tests to illustrate our approach and to show the effectiveness of the method in comparison to existing approaches.

[1]  Charbel Farhat,et al.  The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows , 2012, J. Comput. Phys..

[2]  I. Mezić Spectral Properties of Dynamical Systems, Model Reduction and Decompositions , 2005 .

[3]  Stefan Volkwein,et al.  Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.

[4]  Steven L. Brunton,et al.  Multi-Resolution Dynamic Mode Decomposition , 2015 .

[5]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[6]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[7]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[8]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[9]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[10]  Zlatko Drmac,et al.  A New Selection Operator for the Discrete Empirical Interpolation Method - Improved A Priori Error Bound and Extensions , 2015, SIAM J. Sci. Comput..

[11]  I. Mezić,et al.  Analysis of Fluid Flows via Spectral Properties of the Koopman Operator , 2013 .

[12]  Alessandro Alla,et al.  Randomized model order reduction , 2016, Adv. Comput. Math..

[13]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[14]  Steven L. Brunton,et al.  Compressive sampling and dynamic mode decomposition , 2013, 1312.5186.

[15]  Karen Willcox,et al.  A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems , 2015, SIAM Rev..

[16]  J. Peraire,et al.  A ‘best points’ interpolation method for efficient approximation of parametrized functions , 2008 .

[17]  J. Lumley Stochastic tools in turbulence , 1970 .

[18]  D. Donoho,et al.  The Optimal Hard Threshold for Singular Values is 4 / √ 3 , 2013 .

[19]  Ii James P. Howard Data-Driven Modeling & Scientific Computation: Methods for Complex Systems & Big Data , 2015 .

[20]  B. O. Koopman,et al.  Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Steven L. Brunton,et al.  On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.

[22]  Steven L. Brunton,et al.  Dynamic mode decomposition - data-driven modeling of complex systems , 2016 .

[23]  P. Astrid,et al.  Fast reduced order modeling technique for large scale LTV systems , 2004, Proceedings of the 2004 American Control Conference.

[24]  Gianluigi Rozza,et al.  Reduced Order Methods for Modeling and Computational Reduction , 2013 .

[25]  Lawrence Sirovich,et al.  Karhunen–Loève procedure for gappy data , 1995 .

[26]  Karen Willcox,et al.  Unsteady Flow Sensing and Estimation via the Gappy Proper Orthogonal Decomposition , 2004 .

[27]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[28]  Andrzej Banaszuk,et al.  Comparison of systems with complex behavior , 2004 .

[29]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[30]  Stefan Volkwein,et al.  Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..

[31]  Benjamin Peherstorfer,et al.  Localized Discrete Empirical Interpolation Method , 2014, SIAM J. Sci. Comput..

[32]  S. Volkwein,et al.  MODEL REDUCTION USING PROPER ORTHOGONAL DECOMPOSITION , 2008 .