Interchangeable Stage and Probe Mechanisms for Microscale Universal Mechanical Tester

A microfabricated mechanical test platform has been designed, fabricated, and operated. This system consists of a reusable chip capable of large-displacement actuation, which interfaces to a test coupon chip compatible with synthesis conditions for many nanomaterials. Because only normal forces are used for mechanical interfacing, the two chips are not permanently connected, allowing exchange of the test coupon chips. The actuated test platform chip contains a thermal actuator driving a compliant displacement amplification transmission, and a bulk-micromachined well in which the test coupon chips may be placed and removed. The displacement amplification structure provides 40 of output displacement, extending a probe over the well and into contact with the test coupon. The test coupon contains compliant structures that are actuated by the probe from the test platform.

[1]  Anubhav Tripathi,et al.  Microfluidic reactors for diagnostics applications. , 2011, Annual review of biomedical engineering.

[2]  C. Hierold,et al.  Platform for strainable, tem-compatible, mems-embedded carbon nanotube transistors , 2011, 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems.

[3]  Paul C H Li,et al.  Microfluidic DNA microarray analysis: a review. , 2011, Analytica chimica acta.

[4]  H. Espinosa,et al.  MEMS for In Situ Testing—Handling, Actuation, Loading, and Displacement Measurements , 2010 .

[5]  H. Espinosa,et al.  Multiscale Experiments: State of the Art and Remaining Challenges , 2009 .

[6]  O. Paul,et al.  Wafer-Scale Microtensile Testing of Thin Films , 2009, Journal of Microelectromechanical Systems.

[7]  Reymond Clavel,et al.  In situ tensile testing of individual Co nanowires inside a scanning electron microscope , 2009, Nanotechnology.

[8]  H. Espinosa,et al.  A microelectromechanical system for nano-scale testing of one dimensional nanostructures , 2008 .

[9]  H. Espinosa,et al.  Design and Operation of a MEMS-Based Material Testing System for Nanomechanical Characterization , 2007, Journal of Microelectromechanical Systems.

[10]  J. Melngailis,et al.  Realization of reliable GaN nanowire transistors utilizing dielectrophoretic alignment technique , 2006 .

[11]  Victor M. Bright,et al.  Process integration of carbon nanotubes into microelectromechanical systems , 2006 .

[12]  C. Hierold,et al.  Nano-electromechanical displacement sensing based on single-walled carbon nanotubes. , 2006, Nano letters.

[13]  A. Jungen,et al.  Fabrication of discrete nanoscaled force sensors based on single-walled carbon nanotubes , 2006, IEEE Sensors Journal.

[14]  Beverley J. Inkson,et al.  A miniaturized TEM nanoindenter for studying material deformation in situ , 2006 .

[15]  F. Arai,et al.  In situ measurement of Young's modulus of carbon nanotubes inside a TEM through a hybrid nanorobotic manipulation system , 2006, IEEE Transactions on Nanotechnology.

[16]  M Taher A Saif,et al.  In situ microtensile stage for electromechanical characterization of nanoscale freestanding films , 2006 .

[17]  Horacio D Espinosa,et al.  An electromechanical material testing system for in situ electron microscopy and applications. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  H. Olin,et al.  A micromachined nanoindentation force sensor , 2005 .

[19]  A. Majumdar,et al.  Thermal conductance and thermopower of an individual single-wall carbon nanotube. , 2005, Nano letters.

[20]  T. Kizuka,et al.  Measurements of the atomistic mechanics of single crystalline silicon wires of nanometer width , 2005 .

[21]  S. Sugiyama,et al.  Mechanical and electrical properties evaluation of carbon nanowire using electrostatic actuated nano tensile testing devices (EANAT) , 2005, 5th IEEE Conference on Nanotechnology, 2005..

[22]  R. Twesten,et al.  In situ transmission electron microscopy studies enabled by microelectromechanical system technology , 2005 .

[23]  M. A. Haque,et al.  In situ tensile testing of nanoscale freestanding thin films inside a transmission electron microscope , 2005 .

[24]  James Hone,et al.  Controlled placement of individual carbon nanotubes. , 2005, Nano letters.

[25]  Amit V. Desai,et al.  Test Bed for Mechanical Characterization of Nanowires , 2005 .

[26]  James Hone,et al.  Growth of nanotubes and chemical sensor applications , 2004, SPIE Optics East.

[27]  D. Dikin,et al.  Realization of nanoscale resolution with a micromachined thermally actuated testing stage , 2004 .

[28]  M. Saif,et al.  Deformation mechanisms in free-standing nanoscale thin films: a quantitative in situ transmission electron microscope study. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Kyong-Hoon Lee,et al.  Toward large-scale integration of carbon nanotubes. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[30]  J. J. Broek,et al.  Transmission electron microscopy specimen holder for simultaneous in situ heating and electrical resistance measurements , 2004 .

[31]  Russell M. Taylor,et al.  Controlled placement of an individual carbon nanotube onto a microelectromechanical structure , 2002 .

[32]  M. A. Haque,et al.  Application of MEMS force sensors for in situ mechanical characterization of nano-scale thin films in SEM and TEM , 2002 .

[33]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[34]  T. Kizuka Atomic Process of Point Contact in Gold Studied by Time-Resolved High-Resolution Transmission Electron Microscopy , 1998 .

[35]  Noel C. MacDonald,et al.  Measurement of forces and spring constants of microinstruments , 1998 .

[36]  T. Kizuka Atomistic visualization of deformation in gold , 1998 .

[37]  H. Minoda,et al.  Studies of surface stress by reflection electron microscopy and transmission electron microscopy , 1996 .

[38]  Noel C. MacDonald,et al.  A millinewton microloading device , 1996 .

[39]  H. Espinosa,et al.  The Evolving Role of Experimental Mechanics in 1-D Nanostructure-Based Device Development , 2011 .

[40]  John Greenman,et al.  Development of microfluidic devices for biomedical and clinical application , 2011 .

[41]  J. J. Browna,et al.  Tensile measurement of single crystal gallium nitride nanowires on MEMS test stages , 2011 .