Automated detection of cerebral microbleeds in patients with Traumatic Brain Injury
暂无分享,去创建一个
B. M. ter Haar Romeny | M. Ghafoorian | T. Tan | B. Platel | T.L. van den Heuvel | Mohsen Ghafoorian | B. Goraj | T. Andriessen | R. Manniesing | L. van den Hauwe | L. van den Hauwe | B.M. ter Haar Romeny | T.L.A. van den Heuvel | A.W. van der Eerden | R. Manniesing | T.M.J.C. Andriessen | T. Vande Vyvere | B.M. Goraj | B. Platel | A. van der Eerden | T. Vande Vyvere | T. Tan
[1] Karl J. Friston,et al. Unified segmentation , 2005, NeuroImage.
[2] P. Vos,et al. The reliability of magnetic resonance imaging in traumatic brain injury lesion detection , 2012, Brain injury.
[3] Olivier Salvado,et al. Efficient machine learning framework for computer-aided detection of cerebral microbleeds using the Radon transform , 2014, 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI).
[4] Jun Liu,et al. Diffuse axonal injury after traumatic cerebral microbleeds: an evaluation of imaging techniques , 2014, Neural regeneration research.
[5] Bart M. ter Haar Romeny. Multi-Scale and Multi-Orientation Medical Image Analysis , 2010 .
[6] M. L. Lauzon,et al. Susceptibility-Weighted Imaging is More Reliable Than T2*-Weighted Gradient-Recalled Echo MRI for Detecting Microbleeds , 2013, Stroke.
[7] Michael Brady,et al. Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.
[8] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[9] Eric E. Smith,et al. MR Imaging Detection of Cerebral Microbleeds: Effect of Susceptibility-Weighted Imaging, Section Thickness, and Field Strength , 2008, American Journal of Neuroradiology.
[10] D. Werring,et al. The Microbleed Anatomical Rating Scale (MARS) , 2009, Neurology.
[11] Guido Gerig,et al. Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images , 1998, Medical Image Anal..
[12] Guido Gerig,et al. 3D Multi-scale line filter for segmentation and visualization of curvilinear structures in medical images , 1997, CVRMed.
[13] Max A. Viergever,et al. Efficient detection of cerebral microbleeds on 7.0T MR images using the radial symmetry transform , 2012, NeuroImage.
[14] Hao Chen,et al. Automatic Detection of Cerebral Microbleeds From MR Images via 3D Convolutional Neural Networks , 2016, IEEE Transactions on Medical Imaging.
[15] B. Jennett,et al. Assessment of coma and impaired consciousness. A practical scale. , 1974, Lancet.
[16] Alan C. Evans,et al. A nonparametric method for automatic correction of intensity nonuniformity in MRI data , 1998, IEEE Transactions on Medical Imaging.
[17] E Mark Haacke,et al. Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury: improved detection and initial results. , 2003, Radiology.
[18] Stephen M. Smith,et al. Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.
[19] Stephen M. Smith,et al. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.
[20] Steven Warach,et al. Cerebral Microbleeds : A Field Guide to their Detection and Interpretation , 2012 .
[21] Stephen M. Smith,et al. A global optimisation method for robust affine registration of brain images , 2001, Medical Image Anal..
[22] Susan M. Chang,et al. Computer-aided detection of radiation-induced cerebral microbleeds on susceptibility-weighted MR images☆ , 2013, NeuroImage: Clinical.
[23] M. Seghier,et al. Microbleed Detection Using Automated Segmentation (MIDAS): A New Method Applicable to Standard Clinical MR Images , 2011, PloS one.
[24] David J. Werring,et al. Cerebral Microbleeds: Pathophysiology to Clinical Practice , 2011 .
[25] Marleen de Bruijne,et al. A computer aided detection system for cerebral microbleeds in brain MRI , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).
[26] E Mark Haacke,et al. Semiautomated detection of cerebral microbleeds in magnetic resonance images. , 2011, Magnetic resonance imaging.