Automated evolutionary optimization of ion channel conductances and kinetics in models of young and aged rhesus monkey pyramidal neurons

[1]  Jennifer I Luebke,et al.  Area‐Specific Features of Pyramidal Neurons—a Comparative Study in Mouse and Rhesus Monkey , 2016, Cerebral cortex.

[2]  J. Payandeh,et al.  The hitchhiker’s guide to the voltage-gated sodium channel galaxy , 2016, The Journal of general physiology.

[3]  Eve Marder,et al.  Automatic parameter estimation of multicompartmental neuron models via minimization of trace error with control adjustment. , 2014, Journal of neurophysiology.

[4]  Frances K. Skinner,et al.  Using Multi-Compartment Ensemble Modeling As an Investigative Tool of Spatially Distributed Biophysical Balances: Application to Hippocampal Oriens-Lacunosum/Moleculare (O-LM) Cells , 2014, PloS one.

[5]  Hao Huang,et al.  Estimating parameters and predicting membrane voltages with conductance-based neuron models , 2014, Biological Cybernetics.

[6]  Szabolcs Káli,et al.  A flexible, interactive software tool for fitting the parameters of neuronal models , 2014, Front. Neuroinform..

[7]  A. Korngreen,et al.  A Quantitative Description of Dendritic Conductances and Its Application to Dendritic Excitation in Layer 5 Pyramidal Neurons , 2014, The Journal of Neuroscience.

[8]  Viola Priesemann,et al.  Local active information storage as a tool to understand distributed neural information processing , 2013, Front. Neuroinform..

[9]  Timothy H. Rumbell,et al.  Functional consequences of age-related morphologic changes in pyramidal neurons of the rhesus monkey prefrontal cortex , 2013, BMC Neuroscience.

[10]  A. Prinz,et al.  Multi-objective evolutionary algorithms for analysis of conductance correlations involved in recovery of bursting after neuromodulator deprivation in lobster stomatogastric neuron models , 2013, BMC Neuroscience.

[11]  Henry Markram,et al.  Preserving axosomatic spiking features despite diverse dendritic morphology. , 2013, Journal of neurophysiology.

[12]  Patrick R Hof,et al.  Influence of Highly Distinctive Structural Properties on the Excitability of Pyramidal Neurons in Monkey Visual and Prefrontal Cortices , 2012, The Journal of Neuroscience.

[13]  Arnd Roth,et al.  Automated optimization of a reduced layer 5 pyramidal cell model based on experimental data , 2012, Journal of Neuroscience Methods.

[14]  Y. Jan,et al.  Voltage‐gated potassium channels and the diversity of electrical signalling , 2012, The Journal of physiology.

[15]  Michele Pace,et al.  Global parameter estimation of an Hodgkin-Huxley formalism using membrane voltage recordings: Application to neuro-mimetic analog integrated circuits , 2012, Neurocomputing.

[16]  W. Gerstner,et al.  Parameter extraction and classification of three cortical neuron types reveals two distinct adaptation mechanisms. , 2012, Journal of neurophysiology.

[17]  H. Abarbanel,et al.  Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods , 2012, Biological Cybernetics.

[18]  Jean-Marc Goaillard,et al.  Ca2+/cAMP-Sensitive Covariation of IA and IH Voltage Dependences Tunes Rebound Firing in Dopaminergic Neurons , 2012, The Journal of Neuroscience.

[19]  Mark Kostuk,et al.  Dynamical estimation of neuron and network properties I: variational methods , 2011, Biological Cybernetics.

[20]  Thomas K. Berger,et al.  Effective Stimuli for Constructing Reliable Neuron Models , 2011, PLoS Comput. Biol..

[21]  Henry Markram,et al.  Models of Neocortical Layer 5b Pyramidal Cells Capturing a Wide Range of Dendritic and Perisomatic Active Properties , 2011, PLoS Comput. Biol..

[22]  Dieter Jaeger,et al.  The use of automated parameter searches to improve ion channel kinetics for neural modeling , 2011, Journal of Computational Neuroscience.

[23]  P. Hof,et al.  Age-related morphologic changes alter robustness of neuronal function , 2010, BMC Neuroscience.

[24]  Dieter Jaeger,et al.  The capabilities and limitations of conductance-based compartmental neuron models with reduced branched or unbranched morphologies and active dendrites , 2010, Journal of Computational Neuroscience.

[25]  Jerome Sacks,et al.  Choosing the Sample Size of a Computer Experiment: A Practical Guide , 2009, Technometrics.

[26]  Alfredo Rodriguez,et al.  Three-dimensional neuron tracing by voxel scooping , 2009, Journal of Neuroscience Methods.

[27]  Patrick J Coskren,et al.  The electrotonic structure of pyramidal neurons contributing to prefrontal cortical circuits in macaque monkeys is significantly altered in aging. , 2009, Cerebral cortex.

[28]  Astrid A. Prinz,et al.  Computational intelligence in modeling of biological neurons: A case study of an invertebrate pacemaker neuron , 2009, 2009 International Joint Conference on Neural Networks.

[29]  Liam Paninski,et al.  Smoothing of, and Parameter Estimation from, Noisy Biophysical Recordings , 2009, PLoS Comput. Biol..

[30]  Henry Markram,et al.  Minimal Hodgkin–Huxley type models for different classes of cortical and thalamic neurons , 2008, Biological Cybernetics.

[31]  Erik De Schutter,et al.  Automated neuron model optimization techniques: a review , 2008, Biological Cybernetics.

[32]  Thomas K. Berger,et al.  Evaluating automated parameter constraining procedures of neuron models by experimental and surrogate data , 2008, Biological Cybernetics.

[33]  Erik De Schutter,et al.  Frontiers in Computational Neuroscience Calcium, Synaptic Plasticity and Intrinsic Homeostasis in Purkinje Neuron Models Materials and Methods Original Pc Model , 2022 .

[34]  Cengiz Günay,et al.  Channel Density Distributions Explain Spiking Variability in the Globus Pallidus: A Combined Physiology and Computer Simulation Database Approach , 2008, The Journal of Neuroscience.

[35]  J. Luebke,et al.  Why are pyramidal cell firing rates increased with aging, and what can we do about it? , 2008, BMC Neuroscience.

[36]  Douglas B. Ehlenberger,et al.  Automated Three-Dimensional Detection and Shape Classification of Dendritic Spines from Fluorescence Microscopy Images , 2008, PloS one.

[37]  Susan L. Wearne,et al.  Neuronal Firing Sensitivity to Morphologic and Active Membrane Parameters , 2007, PLoS Comput. Biol..

[38]  Werner Van Geit,et al.  Neurofitter: A Parameter Tuning Package for a Wide Range of Electrophysiological Neuron Models , 2007, Frontiers Neuroinformatics.

[39]  Henry Markram,et al.  A Novel Multiple Objective Optimization Framework for Constraining Conductance-Based Neuron Models by Experimental Data , 2007, Front. Neurosci..

[40]  Erik De Schutter,et al.  Neurofitter: a parameter tuning package for a wide range of electrophysiological neuron models , 2007, BMC Neuroscience.

[41]  Joshua D. Knowles,et al.  Multiobjective Optimization in Bioinformatics and Computational Biology , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[42]  Liam Paninski,et al.  Efficient estimation of detailed single-neuron models. , 2006, Journal of neurophysiology.

[43]  E. Marder,et al.  Variability, compensation and homeostasis in neuron and network function , 2006, Nature Reviews Neuroscience.

[44]  Erik De Schutter,et al.  Complex Parameter Landscape for a Complex Neuron Model , 2006, PLoS Comput. Biol..

[45]  Ronald L Calabrese,et al.  Creation and reduction of a morphologically detailed model of a leech heart interneuron. , 2006, Journal of neurophysiology.

[46]  Susan L. Wearne,et al.  The role of action potential shape and parameter constraints in optimization of compartment models , 2006, Neurocomputing.

[47]  E. Marder,et al.  Variable channel expression in identified single and electrically coupled neurons in different animals , 2006, Nature Neuroscience.

[48]  Michael L. Hines,et al.  The NEURON Book , 2006 .

[49]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[50]  Noam Peled,et al.  Constraining compartmental models using multiple voltage recordings and genetic algorithms. , 2005, Journal of neurophysiology.

[51]  B. Bean,et al.  Robustness of Burst Firing in Dissociated Purkinje Neurons with Acute or Long-Term Reductions in Sodium Conductance , 2005, The Journal of Neuroscience.

[52]  Yu-Ming Chang,et al.  Increased action potential firing rates of layer 2/3 pyramidal cells in the prefrontal cortex are significantly related to cognitive performance in aged monkeys. , 2005, Cerebral cortex.

[53]  Eve Marder,et al.  Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. , 2003, Journal of neurophysiology.

[54]  R. Traub,et al.  Fast rhythmic bursting can be induced in layer 2/3 cortical neurons by enhancing persistent Na+ conductance or by blocking BK channels. , 2003, Journal of neurophysiology.

[55]  I. Jolliffe Principal Component Analysis , 2005 .

[56]  E. Marder,et al.  Global Structure, Robustness, and Modulation of Neuronal Models , 2001, The Journal of Neuroscience.

[57]  Alain Destexhe,et al.  Simplified models of neocortical pyramidal cells preserving somatodendritic voltage attenuation , 2001, Neurocomputing.

[58]  R. Maex,et al.  Introduction to Equation Solving and Parameter Fitting , 2000 .

[59]  Erik De Schutter,et al.  Introduction to Equation Solving and Parameter Fitting , 2000 .

[60]  R. E. Burke,et al.  Comparison of Alternative Designs for Reducing Complex Neurons to Equivalent Cables , 2000, Journal of Computational Neuroscience.

[61]  James M. Bower,et al.  A Comparative Survey of Automated Parameter-Search Methods for Compartmental Neural Models , 1999, Journal of Computational Neuroscience.

[62]  P. Jonas,et al.  Functional differences in Na+ channel gating between fast‐spiking interneurones and principal neurones of rat hippocampus , 1997, The Journal of physiology.

[63]  T. J. Mitchell,et al.  Exploratory designs for computational experiments , 1995 .

[64]  R. Traub,et al.  A branching dendritic model of a rodent CA3 pyramidal neurone. , 1994, The Journal of physiology.

[65]  T. Sejnowski,et al.  Reduced compartmental models of neocortical pyramidal cells , 1993, Journal of Neuroscience Methods.

[66]  M. E. Johnson,et al.  Minimax and maximin distance designs , 1990 .

[67]  D. Wolfe,et al.  Nonparametric Statistical Methods. , 1974 .

[68]  Eve Marder,et al.  Cell Types, Network Homeostasis, and Pathological Compensation from a Biologically Plausible Ion Channel Expression Model , 2014, Neuron.

[69]  Nicholas T. Carnevale,et al.  Introducing The Neuroscience Gateway , 2013, IWSG.

[70]  Carlos A. Coello Coello,et al.  Multi-objective Optimization Using Differential Evolution: A Survey of the State-of-the-Art , 2008 .

[71]  Kenneth V. Price,et al.  Eliminating Drift Bias from the Differential Evolution Algorithm , 2008 .

[72]  K. Zielinski,et al.  Stopping Criteria for Differential Evolution in Constrained Single-Objective Optimization , 2008 .

[73]  R. Storn,et al.  Differential Evolution , 2004 .

[74]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.