Robust Capacity Planning for the Delivery of Industrial Product-service Systems

Abstract Industrial Product-Service Systems (IPS 2 ) are integrated product and service offerings that deliver superior customer value in industrial applications by mutually determined planning, development, delivery and use of product and service shares. A particular challenge for the provision of IPS 2 is the planning of resources, e.g. field service engineers (FSE). As a consequence, organizations which offer IPS 2 or industrial services experience a lack of decision support in determining robust capacity planning strategies in highly dynamic and uncertain environments. In this paper, a simulation-based capacity planning approach is introduced. The focus is on capacity planning of FSE for IPS 2 delivery in IPS 2 or service networks. After some general considerations on robust capacity planning for IPS 2 delivery with the help of scenario simulations, the core elements of the agent-based simulation approach are presented. The most important parameters, control variables and performance indicators are discussed and the procedure of simulation-based scenario planning is outlined.

[1]  H. Van Dyke Parunak,et al.  Agent-Based Modeling vs. Equation-Based Modeling: A Case Study and Users' Guide , 1998, MABS.

[2]  Hartmut Bossel,et al.  Modellbildung und Simulation , 1992 .

[3]  Alexander Fink,et al.  Scenario Management: An Approach to Develop Future Potentials , 1998 .

[4]  Dirk Helbing,et al.  Agent-Based Modeling , 2012 .

[5]  H. Meier,et al.  Industrial Product-Service Systems—IPS2 , 2010 .

[6]  Armin Scholl,et al.  Robuste Planung und Optimierung: Grundlagen, Konzepte und Methoden; experimentelle Untersuchungen , 2000 .

[7]  Friedrich Morlock,et al.  Key performance indicators for assessing the planning and delivery of industrial services , 2013 .

[8]  John Ahmet Erkoyuncu,et al.  Understanding service uncertainties in industrial product–service system cost estimation , 2011 .

[9]  Herbert Meyr,et al.  Supply Chain Management und Advanced Planning , 2010 .

[10]  Sergio Cavalieri,et al.  A simulation-based decision support system for industrial field service network planning , 2014, Simul..

[11]  Eberhard Abele,et al.  Wandlungsfähige Produktionssysteme: Heute die Industrie von morgen gestalten , 2008 .

[12]  Michael J. Drevna,et al.  A Simulation Metamodel for Response‐Time Planning* , 1998 .

[13]  Andrei. Borshchev,et al.  The Big Book of Simulation Modeling: Multimethod Modeling with Anylogic 6 , 2013 .

[14]  Jörg Becker,et al.  Vermarktung hybrider Leistungsbündel - Das ServPay-Konzept , 2010 .

[15]  Gilbert Owusu,et al.  Service Chain Management: Technology Innovation for the Service Business , 2010 .