Consideration of piezoceramic actuator nonlinearity in the active isolation of deterministic vibration

There is an increasing need to effectively control micro-vibration in such fields as metrology, optics and micro-electronics. This paper describes the design of an adaptive feedforward strategy for vibration isolation of harmonic disturbance using a piezoelectric actuator with hysteretic behavior. A nonlinear analytical model of the piezoelectric actuator including a ferroelectric-like behavior is built using a Preisach model of hysteresis. Pre-multiplication of a single-frequency reference signal by the nonlinear model of the stack is investigated in order to effectively compensate the actuator nonlinearity. It is observed that a simple linear model of the stack is sufficient in the adaptation of a filtered-X LMS feedforward controller to effectively compensate the actuator nonlinearity, provided the reference signal has frequency components at the disturbance frequency and its higher harmonics.

[1]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[2]  Yann Pasco,et al.  A Hybrid Analytical/Numerical Model of Piezoelectric Stack Actuators Using a Macroscopic Nonlinear Theory of Ferroelectricity and a Preisach Model of Hysteresis , 2004 .

[3]  H. Janocha,et al.  Adaptive inverse control of piezoelectric actuators with hysteresis operators , 1999, 1999 European Control Conference (ECC).

[4]  Harry F. Tiersten,et al.  Electroelastic equations for electroded thin plates subject to large driving voltages , 1993 .

[5]  Vincent Hayward,et al.  An approach to reduction of hysteresis in smart materials , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[6]  Yann Pasco Étude physique d'un actionneur piézoélectrique multi-couches non-linéaire et applications à l'absorption active des vibrations déterministes sur 1 puis 6 degrés de liberté , 2002 .

[7]  H. Tiersten Linear Piezoelectric Plate Vibrations: Elements of the Linear Theory of Piezoelectricity and the Vibrations Piezoelectric Plates , 1969 .

[8]  R. Ben Mrad,et al.  A model for voltage-to-displacement dynamics in piezoceramic actuators subject to dynamic-voltage excitations , 2002 .

[9]  R. Ben Mrad,et al.  NON-LINEAR SYSTEMS REPRESENTATION USING ARMAX MODELS WITH TIME-DEPENDENT COEFFICIENTS , 2002 .

[10]  K. Kuhnen,et al.  Inverse feedforward controller for complex hysteretic nonlinearities in smart-material systems , 2001 .

[11]  Romesh C. Batra,et al.  Mixed variational principles in non-linear electroelasticity , 1995 .

[12]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[13]  K. Kuhnen,et al.  Inverse control of systems with hysteresis and creep , 2001 .

[14]  Stephen J. Elliott,et al.  Signal Processing for Active Control , 2000 .

[15]  Liping Huang,et al.  Electroelastic equations describing slow hysteresis in polarized ferroelectric ceramic plates , 1998 .

[16]  T. J. Sutton,et al.  Active attenuation of periodic vibration in nonlinear systems using an adaptive harmonic controller , 1995 .

[17]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[18]  Jean Jacques Rousseau,et al.  Amélioration du modèle de Preisach. Application aux matériaux magnétiques doux , 1997 .