The rocky road to organics needs drying

[1]  M. Lilley,et al.  Diversity of magmatism, hydrothermal processes and microbial interactions at mid-ocean ridges , 2022, Nature Reviews Earth & Environment.

[2]  Xing Ding,et al.  Diverse serpentinization and associated abiotic methanogenesis within multiple types of olivine-hosted fluid inclusions in orogenic peridotite from northern Tibet , 2021 .

[3]  K. Hinrichs,et al.  A window into the abiotic carbon cycle – Acetate and formate in fracture waters in 2.7 billion year-old host rocks of the Canadian Shield , 2020 .

[4]  A. del Campo,et al.  Diamond forms during low pressure serpentinisation of oceanic lithosphere , 2020 .

[5]  E. Reeves,et al.  Abiotic Synthesis of Methane and Organic Compounds in Earth’s Lithosphere , 2020 .

[6]  S. Vance,et al.  Serpentinite and the search for life beyond Earth , 2020, Philosophical Transactions of the Royal Society A.

[7]  S. Sylva,et al.  Chemical and isotopic analyses of hydrocarbon-bearing fluid inclusions in olivine-rich rocks , 2020, Philosophical Transactions of the Royal Society A.

[8]  B. Ménez,et al.  New Perspectives on Abiotic Organic Synthesis and Processing during Hydrothermal Alteration of the Oceanic Lithosphere , 2019, Deep Carbon.

[9]  M. Frezzotti Diamond growth from organic compounds in hydrous fluids deep within the Earth , 2019, Nature Communications.

[10]  J. Seewald,et al.  Abiotic methane synthesis and serpentinization in olivine-hosted fluid inclusions , 2019, Proceedings of the National Academy of Sciences.

[11]  B. Jørgensen,et al.  Origin of Short-Chain Organic Acids in Serpentinite Mud Volcanoes of the Mariana Convergent Margin , 2019, Front. Microbiol..

[12]  J. González-Jiménez,et al.  A shallow origin for diamonds in ophiolitic chromitites , 2018, Geology.

[13]  B. Ménez,et al.  Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere , 2018, Nature.

[14]  T. Nakamura,et al.  Prevalence and nature of heating processes in CM and C2-ungrouped chondrites as revealed by insoluble organic matter , 2018, Geochimica et Cosmochimica Acta.

[15]  B. Ménez,et al.  Abiotic formation of condensed carbonaceous matter in the hydrating oceanic crust , 2018, Nature Communications.

[16]  Joana C. Xavier,et al.  Serpentinization: Connecting Geochemistry, Ancient Metabolism and Industrial Hydrogenation , 2018, Life.

[17]  M. Mermoux,et al.  Raman spectroscopy study of detonation nanodiamond , 2018, Diamond and Related Materials.

[18]  I. T. ten Kate,et al.  Organic molecules on Mars , 2018, Science.

[19]  J. Mcdermott,et al.  Clumped isotopologue constraints on the origin of methane at seafloor hot springs , 2018 .

[20]  I. Lednev,et al.  Carbon structure in nanodiamonds elucidated from Raman spectroscopy , 2017 .

[21]  E. Shock,et al.  Geochemical bioenergetics during low‐temperature serpentinization: An example from the Samail ophiolite, Sultanate of Oman , 2017 .

[22]  I. Estève,et al.  Massive production of abiotic methane during subduction evidenced in metamorphosed ophicarbonates from the Italian Alps , 2017, Nature Communications.

[23]  A. Knoll,et al.  Rapid, direct and non-destructive assessment of fossil organic matter via microRaman spectroscopy , 2016 .

[24]  L. Bonal,et al.  Thermal history of type 3 chondrites from the Antarctic meteorite collection determined by Raman spectroscopy of their polyaromatic carbonaceous matter , 2016 .

[25]  F. Guyot,et al.  Thermodynamic constraints on the formation of condensed carbon from serpentinization fluids , 2016 .

[26]  A. Steele,et al.  The provenance, formation, and implications of reduced carbon phases in Martian meteorites , 2016 .

[27]  J. Rouzaud,et al.  The Raman-Derived Carbonization Continuum: A Tool to Select the Best Preserved Molecular Structures in Archean Kerogens , 2016, Astrobiology.

[28]  A. Templeton,et al.  Temperature trends for reaction rates, hydrogen generation, and partitioning of iron during experimental serpentinization of olivine , 2016 .

[29]  M. V. Kranendonk,et al.  Petrogenesis and Geochemistry of Archean Komatiites , 2016 .

[30]  F. Gaillard,et al.  The redox geodynamics linking basalts and their mantle sources through space and time , 2015 .

[31]  A. Koschinsky,et al.  Efficient removal of recalcitrant deep-ocean dissolved organic matter during hydrothermal circulation , 2015 .

[32]  L. Lozac’h,et al.  Deep alteration between Hellas and Isidis Basins , 2015 .

[33]  P. P. Lottici,et al.  Micro‐Raman mapping of the polymorphs of serpentine , 2015 .

[34]  Christopher R. German,et al.  Pathways for abiotic organic synthesis at submarine hydrothermal fields , 2015, Proceedings of the National Academy of Sciences.

[35]  J. Charlou,et al.  The Production of Methane, Hydrogen, and Organic Compounds in Ultramafic-Hosted Hydrothermal Vents of the Mid-Atlantic Ridge , 2015, Astrobiology.

[36]  N. Recham,et al.  Formation of CO2, H2 and condensed carbon from siderite dissolution in the 200–300 °C range and at 50 MPa , 2015 .

[37]  J. Baross,et al.  The pH of Enceladus’ ocean , 2015, 1502.01946.

[38]  J. Rouzaud,et al.  Origin of insoluble organic matter in type 1 and 2 chondrites: New clues, new questions , 2014 .

[39]  A. McCaig,et al.  Fluid evolution in an Oceanic Core Complex: A fluid inclusion study from IODP hole U1309 D—Atlantis Massif, 30°N, Mid‐Atlantic Ridge , 2014 .

[40]  J. Mcdermott,et al.  The origin of methanethiol in midocean ridge hydrothermal fluids , 2014, Proceedings of the National Academy of Sciences.

[41]  H. Keppler,et al.  Nitrogen speciation in mantle and crustal fluids , 2014 .

[42]  D. Sverjensky,et al.  Water in the deep Earth: The dielectric constant and the solubilities of quartz and corundum to 60 kb and 1200 °C , 2014 .

[43]  R. Bhartia,et al.  The drive to life on wet and icy worlds. , 2014, Astrobiology.

[44]  F. C. Manuella Can nanodiamonds grow in serpentinite-hosted hydrothermal systems? A theoretical modelling study , 2013, Mineralogical Magazine.

[45]  Barbara Sherwood Lollar,et al.  ABIOTIC METHANE ON EARTH , 2013 .

[46]  I. Gould,et al.  Organic functional group transformations in water at elevated temperature and pressure: Reversibility, reactivity, and mechanisms , 2013 .

[47]  Robert M. Hazen,et al.  On the Origins of Deep Hydrocarbons , 2013 .

[48]  Martin Mozina,et al.  Orange: data mining toolbox in python , 2013, J. Mach. Learn. Res..

[49]  T. McCollom Laboratory Simulations of Abiotic Hydrocarbon Formation in Earth’s Deep Subsurface , 2012 .

[50]  B. Langmann,et al.  How does the hot core of a volcanic plume control the sulfur speciation in volcanic emission? , 2012 .

[51]  N. Arndt,et al.  Processes on the Young Earth and the Habitats of Early Life , 2012 .

[52]  C.J. Li,et al.  XPS Analysis of SiC Films Prepared by Radio Frequency Plasma Sputtering , 2012 .

[53]  M. Frezzotti,et al.  Raman spectroscopy for fluid inclusion analysis , 2012 .

[54]  N. Sleep,et al.  Serpentinite and the dawn of life , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[55]  M. Miura,et al.  Raman spectroscopy of hydrous inclusions in olivine and orthopyroxene in ophiolitic harzburgite : Implications for elementary processes in serpentinization , 2011 .

[56]  Yury Gogotsi,et al.  The properties and applications of nanodiamonds. , 2011, Nature nanotechnology.

[57]  Martin Rosner,et al.  First Investigation of the Microbiology of the Deepest Layer of Ocean Crust , 2010, PloS one.

[58]  E. Shock,et al.  The Potential for Abiotic Organic Synthesis and Biosynthesis at Seafloor Hydrothermal Systems , 2010 .

[59]  M. Lilley,et al.  Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field , 2010 .

[60]  N. Melnik,et al.  Metastable Nanosized Diamond Formation from Fluid Phase , 2010 .

[61]  Yury Gogotsi,et al.  Phonon confinement effects in the Raman spectrum of nanodiamond , 2009 .

[62]  T. McCollom,et al.  Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks , 2009 .

[63]  D. Kelley,et al.  Sr- and Nd-isotope geochemistry of the Atlantis Massif (30°N, MAR): Implications for fluid fluxes and lithospheric heterogeneity , 2008 .

[64]  D. Frost,et al.  The Redox State of Earth's Mantle , 2008 .

[65]  C. Sotin,et al.  Serpentinization of the martian crust during Noachian , 2008 .

[66]  Deborah S. Kelley,et al.  Abiogenic Hydrocarbon Production at Lost City Hydrothermal Field , 2008, Science.

[67]  F. Longstaffe,et al.  A gas-chromatograph, continuous flow-isotope ratio mass-spectrometry method for δ13C and δD measurement of complex fluid inclusion volatiles: Examples from the Khibina alkaline igneous complex, northwest Russia and the south Wales coalfields , 2007 .

[68]  R. Bodnar,et al.  Preservation of methane generated during serpentinization of upper mantle rocks: Evidence from fluid inclusions in the Nidar ophiolite, Indus Suture Zone, Ladakh (India) , 2007 .

[69]  L. Bonal,et al.  Organic matter and metamorphic history of CO chondrites , 2007 .

[70]  W. Martin,et al.  On the origin of biochemistry at an alkaline hydrothermal vent , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[71]  Chun-Zhu Li,et al.  FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal , 2006 .

[72]  M. Lilley,et al.  Dissolved Organic Carbon in Ridge-Axis and Ridge-Flank Hydrothermal Systems , 2006 .

[73]  M. Zolotov,et al.  Experimental investigation of single carbon compounds under hydrothermal conditions , 2006 .

[74]  J. E. Krzanowski,et al.  Chemical, Mechanical, and Tribological Properties of Pulsed‐Laser‐Deposited Titanium Carbide and Vanadium Carbide , 2005 .

[75]  E. Shock Geochemical constraints on the origin of organic compounds in hydrothermal systems , 1990, Origins of life and evolution of the biosphere.

[76]  B. Evans,et al.  Experimental constraints on thermal cracking of peridotite at oceanic spreading centers , 2013 .

[77]  C. Fowler The Solid Earth , 2004 .

[78]  M. Schulte,et al.  Thiols in hydrothermal solution: standard partial molal properties and their role in the organic geochemistry of hydrothermal environments , 2004 .

[79]  Zhang Guang-wei,et al.  AN OFF-AXIS HYDROTHERMAL VENT FIELD NEAR THE MID-ATLANTIC RIDGE AT 30°N , 2002 .

[80]  Deborah S. Kelley,et al.  An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N , 2001, Nature.

[81]  J. Seewald Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures: constraints from mineral buffered laboratory experiments , 2001 .

[82]  G. Socrates,et al.  Infrared and Raman characteristic group frequencies : tables and charts , 2001 .

[83]  J. Robertson,et al.  Interpretation of Raman spectra of disordered and amorphous carbon , 2000 .

[84]  E. Shock,et al.  A thermodynamic assessment of the potential synthesis of condensed hydrocarbons during cooling and dilution of volcanic gases. , 2000, Journal of geophysical research.

[85]  J. Horita,et al.  Abiogenic methane formation and isotopic fractionation under hydrothermal conditions , 1999, Science.

[86]  E. Shock,et al.  Abiotic synthesis of polycyclic aromatic hydrocarbons on Mars , 1999 .

[87]  D. Kelley,et al.  Abiogenic methane in deep‐seated mid‐ocean ridge environments: Insights from stable isotope analyses , 1999 .

[88]  H. Helgeson,et al.  Calculation of the thermodynamic properties at elevated temperatures and pressures of saturated and aromatic high molecular weight solid and liquid hydrocarbons in kerogen, bitumen, petroleum, and other organic matter of biogeochemical interest , 1998 .

[89]  Everett L. Shock,et al.  Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb , 1997 .

[90]  E. Shock,et al.  Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. , 1997, Geochimica et cosmochimica acta.

[91]  R. Berman,et al.  Optimized standard state and solution properties of minerals , 1996 .

[92]  D. Kelley Methane‐rich fluids in the oceanic crust , 1996 .

[93]  Roberto Scarpa,et al.  Monitoring and Mitigation of Volcano Hazards , 1996 .

[94]  W. Giggenbach Chemical Composition of Volcanic Gases , 1996 .

[95]  R. C. King,et al.  Handbook of X Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of Xps Data , 1995 .

[96]  William I. Rose,et al.  Volcanic-gas studies: Methods, results, and applications , 1994 .

[97]  Everett L. Shock,et al.  Hydrothermal dehydration of aqueous organic compounds , 1993 .

[98]  M. Hochella,et al.  Formation of reduced carbonaceous matter in basalts and xenoliths: reaction of C-O-H gases on olivine crack surfaces. , 1993, Geochimica et Cosmochimica Acta.

[99]  T. J. Wolery,et al.  EQ3/6, a software package for geochemical modeling of aqueous systems: Package overview and installation guide (Version 7.0) , 1992 .

[100]  E. Oelkers,et al.  SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 ° C , 1992 .

[101]  D. Sverjensky,et al.  Thermodynamic assessment of hydrothermal alkali feldspar-mica-aluminosilicate equilibria , 1991 .

[102]  C. Becker,et al.  Organic compounds on crack surfaces in olivine from San Carlos, Arizona and Hualalai Volcano, Hawaii , 1990 .

[103]  E. Anders,et al.  Pre-biotic organic matter from comets and asteroids , 1989, Nature.

[104]  A. Ishitani,et al.  Raman spectra of diamondlike amorphous carbon films , 1988 .

[105]  R. Berman,et al.  Internally consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-F , 1988 .

[106]  G. D. Harper Tectonics of slow spreading mid‐ocean ridges and consequences of a variable depth to the brittle/ductile transition , 1985 .

[107]  H. Helgeson,et al.  Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV, Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 degrees C and 5kb , 1981 .

[108]  J. A. Taylor,et al.  Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis , 1981 .

[109]  H. Helgeson Mass transfer among minerals and hydrothermal solutions. , 1979 .

[110]  I. W. May,et al.  The vibrational spectra of methanethiol , 1968 .