Two-dimensional coordination polymeric structures in caesium complexes with ring-substituted phenoxyacetic acids.

The two-dimensional polymeric structures of the caesium complexes with the phenoxyacetic acid analogues (4-fluorophenoxy)acetic acid, (3-chloro-2-methylphenoxy)acetic acid and the herbicidally active (2,4-dichlorophenoxy)acetic acid (2,4-D), namely poly[[μ5-(4-fluorophenoxy)acetato][μ4-(4-fluorophenoxy)acetato]dicaesium], [Cs2(C8H6FO3)2]n, (I), poly[aqua[μ5-(3-chloro-2-methylphenoxy)acetato]caesium], [Cs(C9H8ClO3)(H2O)]n, (II), and poly[[μ7-(2,4-dichlorophenoxy)acetato][(2,4-dichlorphenoxy)acetic acid]caesium], [Cs(C8H5Cl2O3)(C8H6Cl2O3)]n, (III), are described. In (I), the Cs(+) cations of the two individual irregular coordination polyhedra in the asymmetric unit (one CsO7 and the other CsO8) are linked by bridging carboxylate O-atom donors from the two ligand molecules, both of which are involved in bidentate chelate Ocarboxy,Ophenoxy interactions, while only one has a bidentate carboxylate O,O'-chelate interaction. Polymeric extension is achieved through a number of carboxylate O-atom bridges, with a minimum Cs···Cs separation of 4.3231 (9) Å, giving layers which lie parallel to (001). In hydrated complex (II), the irregular nine-coordination about the Cs(+) cation comprises a single monodentate water molecule, a bidentate Ocarboxy,Ophenoxy chelate interaction and six bridging carboxylate O-atom bonding interactions, giving a Cs···Cs separation of 4.2473 (3) Å. The water molecule forms intralayer hydrogen bonds within the two-dimensional layers, which lie parallel to (100). In complex (III), the irregular centrosymmetric CsO6Cl2 coordination environment comprises two O-atom donors and two ring-substituted Cl-atom donors from two hydrogen bis[(2,4-dichlorophenoxy)acetate] ligand species in a bidentate chelate mode, and four O-atom donors from bridging carboxyl groups. The duplex ligand species lie across crystallographic inversion centres, linked through a short O-H···O hydrogen bond involving the single acid H atom. Structure extension gives layers which lie parallel to (001). The present set of structures of Cs salts of phenoxyacetic acids show previously demonstrated trends among the alkali metal salts of simple benzoic acids with no stereochemically favourable interactive substituent groups for formation of two-dimensional coordination polymers.

[1]  Graham Smith Poly[μ5-{hydrogen bis[(E)-cinnamato]}-caesium] , 2014, Acta crystallographica. Section E, Structure reports online.

[2]  Graham Smith Poly[μ3-aqua-aqua-μ5-(4-nitrobenzoato)-caesium] , 2013, Acta crystallographica. Section E, Structure reports online.

[3]  Graham Smith Poly[μ-aqua-μ5-[2-(2,3,6-trichlorophenyl)acetato]-caesium] , 2013, Acta crystallographica. Section E, Structure reports online.

[4]  Graham Smith Poly[(μ6-4-amino-3,5,6-trichloropyridine-2-carboxylato)aquacaesium] , 2012, Acta crystallographica. Section E, Structure reports online.

[5]  Graham Smith Poly[μ3-aqua-aqua(μ3-3,5-dinitrobenzoato-κO 1:O 3:O 5)caesium] , 2012, Acta crystallographica. Section E, Structure reports online.

[6]  Graham Smith Poly[[diaquabis[μ-2-(4-fluorophenoxy)acetato-κ2 O 1:O 1′]magnesium] 0.4-hydrate] , 2012, Acta crystallographica. Section E, Structure reports online.

[7]  Louis J. Farrugia,et al.  WinGX and ORTEP for Windows: an update , 2012 .

[8]  F. Jian,et al.  Ammonium 2-(2,4-dichlorophenoxy)acetate hemihydrate , 2009, Acta crystallographica. Section E, Structure reports online.

[9]  Anthony L. Spek,et al.  Structure validation in chemical crystallography , 2009, Acta crystallographica. Section D, Biological crystallography.

[10]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[11]  B. Kariuki,et al.  Supramolecular assembly in cinnamate structures: The influence of the ammonium ion and halogen interactions , 2006 .

[12]  K. V. Hecke,et al.  Alkali-metal salts of aromatic carboxylic acids: Liquid crystals without flexible chains , 2005 .

[13]  R. Antrobus,et al.  Conformational comparisons between phenoxyacetic acid derivatives in adducts and those in the free form. Part 2 , 2003 .

[14]  G. Rosair,et al.  Sodium phenoxyacetate hemihydrate. , 2001, Acta crystallographica. Section C, Crystal structure communications.

[15]  P. Healy,et al.  Conformational Comparisons Between Phenoxyacetic Acid Derivatives in Adducts and in the Free Form , 1999 .

[16]  Giovanni Luca Cascarano,et al.  Completion and refinement of crystal structures with SIR92 , 1993 .

[17]  T. Mak,et al.  Metal phenoxyalkanoic acid interactions—36. The preparation and crystal structures of tetraaquabis(2-phenoxybenzoato)nickel(ii) dihydrate, diaquabis(4-fluorophenoxyacetato)zinc(ii), catena-diaquabis(phenoxyacetato)cobalt(ii) and tetrakis-μ-[(pentafluorophenoxy)acetato(o,o′)] bis[aquacopper(ii)] , 1993 .

[18]  G. Smith,et al.  Structure Systematics of Auxin Herbicides. XXX. The Crystal Structures of (2-Isopropylphenoxy)-acetic Acid, (4-Fluorophenoxy)acetic Acid, (2,4-Dichloro-5-fluorophenoxy)acetic Acid and (Indol-3-ylthio)acetic Acid , 1992 .

[19]  C. Kennard,et al.  Polymeric caesium o‐phenylenedioxydiacetate dihydrate , 1989 .

[20]  A. White,et al.  Metal–phenoxyalkanoic acid interactions. Part 13. Copper(II)–(2-chlorophenoxy)ethanoic acid complexes. Crystal and molecular structures of catena-tetra-µ-[(2-chlorophenoxy)ethanoato-O,O′]-dicopper(II), catena-(2-aminopyrimidine-N,N′)-tetra-µ-[(2-chlorophenoxy)ethanoato-O,O′]-dicopper(II), and 1,2,2, , 1985 .

[21]  C. Kennard,et al.  Metal-phenoxyalkanoic acid interactions. Part 11 Crystal structure of potassium 2, 4-dichlorophenoxy-acatate hemihydrate , 1983 .

[22]  C. Kennard,et al.  Metal–phenoxyalkanoic acid interactions. Part 2. Crystal and molecular structures of diaquabis(phenoxyacetato)manganese(II), diaquabis(p-chlorophenoxyacetato) manganese(II), diaquabis (phenoxyacetato) cobalt(II), diaquabis(p-chlorophenoxyacetato)cobalt(II), diaquabis(phenoxyacetato)magnesium(II), an , 1980 .

[23]  C. Kennard,et al.  Structural and conformational aspects of phenoxyalkanoic acids as determined in the solid state by diffraction methods , 1979 .

[24]  C. Kennard,et al.  Herbicides. Part I. Crystal structure of 2,4-D (2,4-dichlorophenoxyacetic acid) , 1976 .

[25]  F. Rossotti,et al.  Structure and stability of carboxylate complexes. Part IV. The crystal and molecular structure of sodium phenoxyacetate hemihydrate , 1971 .

[26]  J. Carruthers,et al.  Structure and stability of carboxylate complexes. Part I. The crystal and molecular structures of copper(II) glycollate, DL-lactate, 2-hydroxy-2-methylpropionate, methoxyacetate, and phenoxyacetate , 1968 .

[27]  S. Grimvall,et al.  The crystal structures of the acid salts of some monobasic acids. Part XI. Rubidium hydrogen diaspirinate (bisacetylsalicylate) , 1967 .

[28]  J. Speakman,et al.  229. The crystal structures of the acid salts of some monobasic acids. Part V. Rubidium hydrogen di-o-nitrobenzoate and potassium hydrogen di-p-nitrobenzoate , 1961 .