Curvature effects on theE33andE44exciton transitions in semiconducting single-walled carbon nanotubes

[1]  M. Dresselhaus,et al.  Chirality dependence of many body effects of single wall carbon nanotubes , 2007 .

[2]  Jannik C. Meyer,et al.  E-33 and E-44 optical transitions in semiconducting single-walled carbon nanotubes: Electron diffraction and Raman experiments , 2007 .

[3]  Sergei Tretiak,et al.  Third and fourth optical transitions in semiconducting carbon nanotubes. , 2007, Physical review letters.

[4]  M. Dresselhaus,et al.  Chirality dependence of exciton effects in single-wall carbon nanotubes: Tight-binding model , 2007 .

[5]  S. Goupalov,et al.  Transition level dependence of Raman intensities in carbon nanotubes : Role of exciton decay , 2006 .

[6]  S. Louie,et al.  Diameter and chirality dependence of exciton properties in carbon nanotubes , 2006, cond-mat/0606474.

[7]  S. Goupalov,et al.  Excitation and chirality dependence of the exciton-phonon coupling in carbon nanotubes , 2006 .

[8]  S. Maruyama,et al.  Polarization dependent optical absorption properties of single-walled carbon nanotubes and methodology for the evaluation of their morphology , 2005 .

[9]  J. Maultzsch,et al.  Radial breathing mode of single-walled carbon nanotubes: Optical transition energies and chiral-index assignment , 2005, cond-mat/0510427.

[10]  S. Goupalov Erratum: Chirality dependence of the Raman cross section of carbon nanotubes [Phys. Rev. B 71, 153404 (2005)] , 2005 .

[11]  M. Dresselhaus,et al.  Intensity of the resonance Raman excitation spectra of single-wall carbon nanotubes , 2005 .

[12]  S. Goupalov Chirality dependence of Raman cross-section in carbon nanotubes , 2005, 2005 Quantum Electronics and Laser Science Conference.

[13]  Jie Liu,et al.  Raman spectroscopy and imaging of ultralong carbon nanotubes. , 2005, The journal of physical chemistry. B.

[14]  M. Dresselhaus,et al.  Resonance Raman spectroscopy (n,m)-dependent effects in small-diameter single-wall carbon nanotubes , 2005 .

[15]  M. Dresselhaus,et al.  Family behavior of the optical transition energies in single-wall carbon nanotubes of smaller diameters , 2004 .

[16]  K. Hata,et al.  Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes , 2004, Science.

[17]  M. Dresselhaus,et al.  Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: environment and temperature effects. , 2004, Physical review letters.

[18]  J. Maultzsch,et al.  Chirality distribution and transition energies of carbon nanotubes. , 2004, Physical review letters.

[19]  G. Bussi,et al.  Quantum interferences in the Raman cross section for the radial breathing mode in metallic carbon nanotubes , 2004, cond-mat/0408583.

[20]  Cambridge,et al.  The strength of the radial-breathing mode in single-walled carbon nanotubes , 2004, cond-mat/0408436.

[21]  S. Mazumdar,et al.  Electron-electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes. , 2004, Physical review letters.

[22]  M. Strano,et al.  Resonant Raman excitation profiles of individually dispersed single walled carbon nanotubes in solution , 2004 .

[23]  S. Arepalli Laser ablation process for single-walled carbon nanotube production. , 2004, Journal of nanoscience and nanotechnology.

[24]  C. Kane,et al.  Electron interactions and scaling relations for optical excitations in carbon nanotubes. , 2004, Physical review letters.

[25]  J. Tersoff,et al.  Scaling of excitons in carbon nanotubes. , 2004, Physical review letters.

[26]  V. Popov Curvature effects on the structural, electronic and optical properties of isolated single-walled carbon nanotubes within a symmetry-adapted non-orthogonal tight-binding model , 2004 .

[27]  M. Strano Probing chiral selective reactions using a revised Kataura plot for the interpretation of single-walled carbon nanotube spectroscopy. , 2003, Journal of the American Chemical Society.

[28]  S. Louie,et al.  Excitonic effects and optical spectra of single-walled carbon nanotubes. , 2003, Physical review letters.

[29]  M. Kertész,et al.  The geometry and the radial breathing mode of carbon nanotubes: beyond the ideal behaviour , 2003 .

[30]  S. Bachilo,et al.  Dependence of Optical Transition Energies on Structure for Single-Walled Carbon Nanotubes in Aqueous Suspension: An Empirical Kataura Plot , 2003 .

[31]  Carter Kittrell,et al.  Assignment of (n, m) Raman and Optical Features of Metallic Single-Walled Carbon Nanotubes , 2003 .

[32]  F. Hennrich,et al.  Near-Infrared Photoluminescence of Single-Walled Carbon Nanotubes Prepared by the Laser Vaporization Method , 2003 .

[33]  R. Smalley,et al.  Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes , 2002, Science.

[34]  Charles M. Lieber,et al.  Structural ( n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. , 2001, Physical review letters.

[35]  S. Reich,et al.  Chirality dependence of the density-of-states singularities in carbon nanotubes , 2000 .

[36]  Riichiro Saito,et al.  Trigonal warping effect of carbon nanotubes , 2000 .

[37]  H. Kataura,et al.  Optical Properties of Single-Wall Carbon Nanotubes , 1999 .

[38]  R. Smalley,et al.  Raman modes of metallic carbon nanotubes , 1998 .

[39]  T. Ando Excitons in Carbon Nanotubes , 1997 .