Description of low-temperature interstitial hardening of the b.c.c. lattice from in situ experiments

Abstract The interactions between mobile screw dislocations and interstitial atoms are described by analogy with interactions between dislocations and localized obstacles observed by in situ straining experiments on b.c.c. crystals at low temperatures. The major effect of interstitial doping is to reduce the length of the elementary screw dislocation segments on which double-kink nucleation takes place. This length is evaluated using simple statistical arguments and is introduced into the strain-rate equation of the deformation. Numerical evaluation of the thermal component of interstitial hardening is discussed with regard to recently published data on nitrogen-doped ultra-pure niobium. Difficulties associated with the experimental determination of interstitial hardening by conventional tensile tests are discussed.

[1]  D. Bacon,et al.  Microyielding in tantalum single crystals—I. Microflow parameters , 1977 .

[2]  D. K. Bowen,et al.  The deformation behaviour of dilute niobium-nitrogen alloys , 1977 .

[3]  A. Boudet,et al.  Exhaustion mechanisms in the Preyield domain of niobium single crystals at low temperatures , 1975 .

[4]  M. Meshii,et al.  Solid solution softening and solid solution hardening , 1973 .

[5]  P. Kubin,et al.  Etude de la déformation plastique de monocristaux de niobium de haute pureté a basse température , 1973 .

[6]  H. Schultz,et al.  The work-hardening of pure and nitrogen doped tantalum crystals , 1973 .

[7]  F. Guiu The influence of lattice friction on point defect hardening , 1969 .

[8]  M. Duesbery The influence of core structure on dislocation mobility , 1969 .

[9]  V. Cosslett,et al.  High-Voltage Electron Microscopy , 1968, Quarterly Reviews of Biophysics.

[10]  A. Keh,et al.  Solid solution strengthening in Fe-N single crystals , 1968 .

[11]  R. Arsenault The double-kink model for low-temperature deformation of B.C.C. metals and solid solutions , 1967 .

[12]  V. Vítek,et al.  SLIP AND THE CONCEPTION OF SPLITTING OF DISLOCATIONS IN b.c.c. METALS , 1967 .

[13]  R. Fleischer Rapid Solution Hardening, Dislocation Mobility, and the Flow Stress of Crystals , 1962 .

[14]  N. Brown,et al.  Temperature dependence of the yield points in iron , 1962 .

[15]  U. F. Kocks Thermodynamics and kinetics of slip , 1975 .

[16]  T. Mitchell,et al.  Interstitial solution hardening in tantalum single crystals , 1970 .

[17]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .

[18]  D. Vesely The Study of Slip Bands on the Surface of Mo Single Crystals , 1968 .

[19]  B. Escaig L'activation thermique des déviations sous faibles contraintes dans les structures h.c. et c.c. Par , 1968 .