Mechanical control of electroresistive switching.

Hysteretic metal-insulator transitions (MIT) mediated by ionic dynamics or ferroic phase transitions underpin emergent applications for nonvolatile memories and logic devices. The vast majority of applications and studies have explored the MIT coupled to the electric field or temperarture. Here, we argue that MIT coupled to ionic dynamics should be controlled by mechanical stimuli, the behavior we refer to as the piezochemical effect. We verify this effect experimentally and demonstrate that it allows both studying materials physics and enabling novel data storage technologies with mechanical writing and current-based readout.

[1]  F. D. Bergevin,et al.  Lattice parameter, microstrains and non-stoichiometry in NiO. Comparison between mosaic microcrystals and quasi-perfect single microcrystals , 1979 .

[2]  W. Pickett,et al.  Exact exchange for correlated electrons , 2006 .

[3]  Jun Yeong Seok,et al.  Surface redox induced bipolar switching of transition metal oxide films examined by scanning probe microscopy , 2011 .

[4]  Daniele Ielmini,et al.  Threshold switching mechanism by high-field energy gain in the hopping transport of chalcogenide glasses , 2008 .

[5]  H. D. Merchant,et al.  Influence of Stoichiometry on Lattice Parameter in Fe3O4, NiO, and Ni‐Fe Ferrite , 1969 .

[6]  H. Hwang,et al.  BASIC NOTIONS , 2022 .

[7]  R. Waser,et al.  TiO2—a prototypical memristive material , 2011, Nanotechnology.

[8]  B. Grzybowski,et al.  The Mosaic of Surface Charge in Contact Electrification , 2011, Science.

[9]  E. Fukada,et al.  Triboelectricity and Electron Traps in Insulating Materials: Some Correlations , 1958, Nature.

[10]  R. Stanley Williams,et al.  Current-controlled negative differential resistance due to Joule heating in TiO2 , 2011, 1108.3120.

[11]  Tomoji Kawai,et al.  Resistive-switching memory effects of NiO nanowire/metal junctions. , 2010, Journal of the American Chemical Society.

[12]  Stuart B. Adler,et al.  Chemical expansivity of electrochemical ceramics , 2004 .

[13]  Z. Grzesik,et al.  Oxidation of nickel and transport properties of nickel oxide , 2004 .

[14]  J. Mannhart,et al.  Oxide Interfaces—An Opportunity for Electronics , 2010, Science.

[15]  Valentin L. Popov Rigorous Treatment of Contact Problems – Hertzian Contact , 2010 .

[16]  Takashi Hotta,et al.  Colossal Magnetoresistant Materials: The Key Role of Phase Separation , 2000, cond-mat/0012117.

[17]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[18]  Jae Hyuck Jang,et al.  Effects of heat dissipation on unipolar resistance switching in Pt∕NiO∕Pt capacitors , 2008, 0802.3739.

[19]  J. Ziman Principles of the Theory of Solids , 1965 .

[20]  Xiyong Chen,et al.  Thermal and Chemical Expansion of Sr-Doped Lanthanum Cobalt Oxide (La1-xSrxCoO3-δ) , 2005 .

[21]  S. Kalinin,et al.  Thermodynamics of electromechanically coupled mixed ionic-electronic conductors: Deformation potential, Vegard strains, and flexoelectric effect , 2011 .

[22]  H. K. Wickramasinghe,et al.  Kelvin probe force microscopy , 1991 .

[23]  P. Gai,et al.  Solid-State Defect Mechanism in Vanadyl Pyrophosphate Catalysts: Implications for Selective Oxidation , 1995, Science.

[24]  Yasuhiko Ishikawa,et al.  Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si ( 100 ) , 2004 .

[25]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[26]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[27]  S. Hüfner,et al.  Photoemission and inverse photoemission spectroscopy of NiO , 1984 .

[28]  Mathews,et al.  Ferroelectric Field Effect Transistor Based on Epitaxial Perovskite Heterostructures , 1997, Science.

[29]  B. Sheldon,et al.  Space charge induced surface stresses: implications in ceria and other ionic solids. , 2011, Physical review letters.

[30]  T. Arias,et al.  Elastic effects of vacancies in strontium titanate: Short- and long-range strain fields, elastic dipole tensors, and chemical strain , 2008, 0811.2967.

[31]  Peter Blaha,et al.  Hybrid exchange-correlation energy functionals for strongly correlated electrons: Applications to transition-metal monoxides , 2006 .

[32]  A. Gruverman,et al.  Supplementary Materials for Mechanical Writing of Ferroelectric Polarization , 2012 .

[33]  L. Bartel,et al.  Exchange Striction in NiO , 1971 .

[34]  Hidekazu Tanaka,et al.  Multistate Memory Devices Based on Free‐standing VO2/TiO2 Microstructures Driven by Joule Self‐Heating , 2012, Advanced materials.

[35]  Changdeuck Bae,et al.  Origin of surface potential change during ferroelectric switching in epitaxial PbTiO3 thin films studied by scanning force microscopy , 2009 .

[36]  Yoshinori Tokura,et al.  Critical features of colossal magnetoresistive manganites , 2006 .

[37]  S. Thompson,et al.  Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors , 2007 .

[38]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[39]  V. Anisimov,et al.  NiO: correlated band structure of a charge-transfer insulator. , 2007, Physical review letters.

[40]  Thermal Effects in Amorphous‐Semiconductor Switching , 1971 .

[41]  J. Henniker Triboelectricity in Polymers , 1962, Nature.

[42]  S. Seo,et al.  Different resistance switching behaviors of NiO thin films deposited on Pt and SrRuO3 electrodes , 2009 .

[43]  V. Garcia,et al.  Giant tunnel electroresistance for non-destructive readout of ferroelectric states , 2009, Nature.

[44]  Masatoshi Imada,et al.  Metal-insulator transitions , 1998 .

[45]  Elbio Dagotto,et al.  Complexity in Strongly Correlated Electronic Systems , 2005, Science.

[46]  Seungbum Hong,et al.  Ambient effects on electric-field-induced local charge modification of TiO2 , 2012 .

[47]  Haller,et al.  Band-edge hydrostatic deformation potentials in III-V semiconductors. , 1987, Physical review letters.

[48]  Harrison,et al.  Ab initio study of MnO and NiO. , 1994, Physical review. B, Condensed matter.

[49]  J. Mydosh,et al.  Spatially Inhomogeneous Metal-Insulator Transition in Doped Manganites. , 1999, Science.

[50]  Sergei V. Kalinin,et al.  Polarization Control of Electron Tunneling into Ferroelectric Surfaces , 2009, Science.

[51]  A. Cheetham,et al.  Magnetic ordering and exchange effects in the antiferromagnetic solid solutionsMnxNi1−xO , 1983 .

[52]  D. Jeong,et al.  Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook , 2011, Nanotechnology.

[53]  A. Sawa Resistive switching in transition metal oxides , 2008 .

[54]  Andrew C. Kummel,et al.  Kelvin probe force microscopy and its application , 2011 .

[55]  Roger Proksch,et al.  Interplay between ferroelastic and metal-insulator phase transitions in strained quasi-two-dimensional VO2 nanoplatelets. , 2010, Nano letters.

[56]  S. Thompson,et al.  Measurement of conduction band deformation potential constants using gate direct tunneling current in n-type metal oxide semiconductor field effect transistors under mechanical stress , 2006 .

[57]  C. Herring,et al.  Transport and Deformation-Potential Theory for Many-Valley Semiconductors with Anisotropic Scattering , 1956 .

[58]  J. Allen,et al.  Magnitude and origin of the band gap in NiO , 1984 .

[59]  Vladislav V. Kharton,et al.  Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. III. Recent trends and selected methodological aspects , 2011 .