Phase Unwrapping for SAR Interferometry—A Data Fusion Approach by Kalman Filtering

This paper considers the problem of unwrapping the phase image obtained from a noisy interferometric synthetic aperture radar (InSAR) image. The implicit nonlinearity of the problem is reflected, as well as the drawbacks of this nonlinearity on the performance of phase unwrapping approaches. Some general concepts concerning basic estimation techniques are shortly reviewed. On this background, a Kalman filter-based data fusion approach to unwrap and simultaneously filter the phases of InSAR images is developed. The data fusion concept exploits phase information extracted from the complex interferogram rather than from the phase image and fuses that information with phase slope information extracted from the power spectral density of the interferogram.

[1]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[2]  Christoph Arndt Informationsgewinnung und -verarbeitung in nichtlinearen dynamischen Systemen , 1997 .

[3]  Nan Wu,et al.  A locally adaptive filter of interferometric phase images , 2006, IEEE Geoscience and Remote Sensing Letters.

[4]  J. Goodman Statistical Properties of Laser Speckle Patterns , 1963 .

[5]  Qifeng Yu,et al.  An Adaptive Contoured Window Filter for Interferometric Synthetic Aperture Radar , 2007, IEEE Geoscience and Remote Sensing Letters.

[6]  C. Werner,et al.  Satellite radar interferometry: Two-dimensional phase unwrapping , 1988 .

[7]  N E Manos,et al.  Stochastic Models , 1960, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[8]  Otmar Loffeld,et al.  Estimating the derivative of modulo-mapped phases , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[9]  Mihai Datcu,et al.  Bayesian approaches to phase unwrapping: theoretical study , 2000, IEEE Trans. Signal Process..

[10]  Richard Bamler,et al.  Phase statistics and decorrelation in SAR interferograms , 1993, Proceedings of IGARSS '93 - IEEE International Geoscience and Remote Sensing Symposium.

[11]  Konstantinos Papathanassiou,et al.  A new technique for noise filtering of SAR interferometric phase images , 1998, IEEE Trans. Geosci. Remote. Sens..

[12]  Alfonso Farina,et al.  A fast phase unwrapping algorithm for SAR interferometry , 1999, IEEE Trans. Geosci. Remote. Sens..

[13]  D. Fraser,et al.  The optimum linear smoother as a combination of two optimum linear filters , 1969 .

[14]  Akira Hirose,et al.  Adaptive noise reduction of InSAR images based on a complex-valued MRF model and its application t o phase unwrapping problem , 2002, IEEE Trans. Geosci. Remote. Sens..

[15]  Otmar Loffeld,et al.  Estimationstheorie I: Grundlagen und stochastische Konzepte , 1990 .

[16]  D. Middleton An Introduction to Statistical Communication Theory , 1960 .

[17]  Otmar Loffeld,et al.  Estimationstheorie II: Anwendungen - Kalman-Filter , 1990 .

[18]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[19]  John Bowman Thomas,et al.  An introduction to statistical communication theory , 1969 .

[20]  Otmar Loffeld,et al.  Demodulation of noisy phase or frequency modulated signals with Kalman filters , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[21]  Dan Meng,et al.  A Novel Technique for Noise Reduction in InSAR Images , 2007, IEEE Geoscience and Remote Sensing Letters.