Modeling and experimental validation of new two degree-of-freedom piezoelectric actuators

Abstract This study presents innovative two-degree-of-freedom piezoelectric actuators, which apply piezoelectric buzzers to play as a driving source. Under piezoelectric force and dry friction, the piezoelectric actuators not only can move in the Z -axis direction, but also rotate along the Y -axis. The Z -axis displacement can reach 62 mm and the rotation angle along the Y -axis can reach 270°. Compared with the literature, this innovative piezoelectric actuator design easily and rapidly achieves one degree-of-freedom translation and one degree-of-freedom rotation. Equations of motion are derived based on piezoelectric properties and Newton’s law. Two types of actuators are created in this study. In the first type, centers of two piezoelectric buzzers are attached to an arm while in the other type each rim of two piezoelectric buzzers is attached to the arm. Experimental results are compared with theoretical results. According to experimental results, the present actuator can accomplish the translational velocity of 21 mm/s, angular velocity of 3.72 rad/s, and 2.32 mN in force. This study presents a piezoelectric actuator capable of both translation and rotation, which is rare in the literature.

[1]  Willy Charon,et al.  Benefits of amplification in an inertial stepping motor , 2012 .

[2]  Seok-Jin Yoon,et al.  Analysis of Tiny Piezoelectric Ultrasonic Linear Motor , 2006 .

[3]  Tomoaki Mashimo,et al.  Development of rotary-linear piezoelectric actuator for MRI compatible manipulator , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  Dalius Mazeika,et al.  Linear inertial piezoelectric motor with bimorph disc , 2013 .

[5]  Kee-Joe Lim,et al.  Fabrication and characteristics of impact type ultrasonic motor , 2007 .

[6]  Hejun Du,et al.  Analytical and experimental study on a piezoelectric linear motor , 1998 .

[7]  N. Kawahara,et al.  Multi-layered piezoelectric bimorph actuator , 1997, 1997 International Symposium on Micromechanics and Human Science (Cat. No.97TH8311).

[8]  Laxman Saggere,et al.  An analytical model and working equations for static deflections of a circular multi-layered diaphragm-type piezoelectric actuator , 2007 .

[9]  Xiaoguang Fan,et al.  Deformation behavior of variable-thickness region of billet in rib-web component isothermal local loading process , 2012 .

[10]  Jong-Sub Lee,et al.  Characteristics of Disk-type Linear Ultrasonic Motor for Application to x-y Stage , 2006 .

[11]  Seung-Ho Lee,et al.  Piezoelectric linear motor with unimorph structure by co-extrusion process , 2008 .

[12]  Han-Pang Huang,et al.  Piezo-electric driver of ultrasonic motor on the humanoid robot , 2008, 2008 IEEE Workshop on Advanced robotics and Its Social Impacts.

[13]  Kenji Uchino,et al.  Piezoelectric actuators 2006 , 2008 .

[14]  Takeshi Morita,et al.  Miniature piezoelectric motors , 2003 .

[15]  Jaehwan Kim,et al.  Micro–macro linear piezoelectric motor based on self-moving cell , 2009 .

[16]  龍一 吉田,et al.  スムーズインパクト駆動機構(SIDM)の開発(第2報) , 2002 .

[17]  Hiroshi Hosaka,et al.  A miniaturized resonant-type smooth impact drive mechanism actuator , 2012 .

[18]  Wenjun Zhang,et al.  Piezoelectric friction–inertia actuator—a critical review and future perspective , 2012 .

[19]  W.E. Dixon,et al.  A new continuously differentiable friction model for control systems design , 2005, Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics..

[20]  R. Bansevicius,et al.  Multi-degree-of-freedom ultrasonic motors for mass-consumer devices , 2008 .

[21]  Tim King,et al.  Piezoelectric Modelling for an Impact Actuator , 2003 .

[22]  Ping Zeng,et al.  A 2-dimensional impact driven precise actuator using piezoelectric bimorphs , 2006 .

[23]  Bharat Bhushan,et al.  Device level studies of adaptive optics sliding components in microprojectors , 2012 .

[24]  Javad Dargahi,et al.  Design and development of a new piezoelectric linear Inchworm actuator , 2005 .

[25]  James Friend,et al.  Piezoelectric ultrasonic micro/milli-scale actuators , 2009 .

[26]  Seok-Jin Yoon,et al.  Constructions and characteristics of a tiny piezoelectric linear motor using radial mode vibrations , 2006 .

[27]  T. Morita,et al.  Resonant-type Smooth Impact Drive Mechanism (SIDM) actuator using a bolt-clamped Langevin transducer. , 2012, Ultrasonics.

[28]  B. D. Shafer,et al.  An electronically controlled piezoelectric insulin pump and valves , 1978, IEEE Transactions on Sonics and Ultrasonics.

[29]  Seok-Jin Yoon,et al.  Analysis of driving mechanism for tiny piezoelectric linear motor , 2006 .

[30]  Pinkuan Liu,et al.  An in-pipe micro robot actuated by piezoelectric bimorphs , 2009 .

[31]  Kenji Uchino,et al.  Piezoelectric Actuators Development History and the Future (特集 エレクトロニク・セラミクスの過去・現在・未来--35年の歩みを振り返って) -- (第二部 分野別に見るエレセラの過去・現在・未来) , 2006 .

[32]  Chong-Yun Kang,et al.  A novel tiny ultrasonic linear motor using the radial mode of a bimorph , 2006 .