Least Squares Shadowing Sensitivity Analysis of Chaotic Flow Around a Two-Dimensional Airfoil

Gradient-based sensitivity analysis has proven to be an enabling technology for many applications, including design of aerospace vehicles. However, conventional sensitivity analysis methods break d...

[1]  M. Allen,et al.  Sensitivity analysis of the climate of a chaotic system , 2000 .

[2]  Myles R. Allen,et al.  Sensitivity analysis of the climate of a chaotic ocean circulation model , 2002 .

[3]  S. Pilyugin Shadowing in dynamical systems , 1999 .

[4]  Mark J. Friedman,et al.  Numerical computation of heteroclinic orbits , 1989 .

[5]  G. S. Fishman Grouping Observations in Digital Simulation , 1978 .

[6]  Peter A. Gnoffo,et al.  Computational Aerothermodynamic Simulation Issues on Unstructured Grids , 2004 .

[7]  John Thuburn,et al.  Climate sensitivities via a Fokker–Planck adjoint approach , 2005 .

[8]  Qiqi Wang,et al.  Least squares shadowing sensitivity analysis of a modified Kuramoto–Sivashinsky equation , 2013, 1307.8197.

[9]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[10]  D. Ruelle Differentiation of SRB States , 1997 .

[11]  W. K. Anderson,et al.  Sensitivity Analysis for Navier-Stokes Equations on Unstructured Meshes Using Complex Variables , 2001 .

[12]  Max D. Gunzburger 2. Three Approaches to Optimal Control and Optimization , 2002 .

[13]  Qiqi Wang,et al.  Sensitivity analysis on chaotic dynamical system by Non-Intrusive Least Square Shadowing (NI-LSS) , 2016 .

[14]  Qiqi Wang,et al.  Multiple Shooting Shadowing for Sensitivity Analysis of Chaotic Systems and Turbulent fluid flows , 2015 .

[15]  W. K. Anderson,et al.  An implicit upwind algorithm for computing turbulent flows on unstructured grids , 1994 .

[16]  Eric J. Nielsen,et al.  Multi-point Adjoint-Based Design of Tilt-Rotors in a Noninertial Reference Frame , 2014 .

[17]  Qiqi Wang,et al.  Convergence of the Least Squares Shadowing Method for Computing Derivative of Ergodic Averages , 2013, SIAM J. Numer. Anal..

[18]  Qiqi Wang,et al.  Least Squares Shadowing for Sensitivity Analysis of Turbulent Fluid Flows , 2014, 1401.4163.

[19]  J. Alonso,et al.  A Coupled-Adjoint Sensitivity Analysis Method for High-Fidelity Aero-Structural Design , 2005 .

[20]  Qiqi Wang,et al.  Least Squares Shadowing sensitivity analysis of chaotic limit cycle oscillations , 2012, J. Comput. Phys..

[21]  Bengt Fornberg,et al.  Numerical Differentiation of Analytic Functions , 1981, TOMS.

[22]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[23]  Andrew J. Majda,et al.  Blended response algorithms for linear fluctuation-dissipation for complex nonlinear dynamical systems , 2007 .

[24]  Max Gunzburger,et al.  Perspectives in flow control and optimization , 1987 .

[25]  Robert T. Biedron,et al.  Recent Enhancements To The FUN3D Flow Solver For Moving-Mesh Applications , 2009 .

[26]  G. Iaccarino,et al.  Risk assessment of scramjet unstart using adjoint-based sampling methods , 2012 .

[27]  Parviz Moin,et al.  Risk Quantification in Unsteady Flow Simulations using Adjoint-based Approaches , 2009 .

[28]  Juan Sánchez,et al.  On the Multiple Shooting Continuation of Periodic orbits by Newton-Krylov Methods , 2010, Int. J. Bifurc. Chaos.

[29]  D. Bodony,et al.  Controller selection and placement in compressible turbulent flows By , 2012 .

[30]  Qiqi Wang,et al.  Uncertainty quantification for unsteady fluid flow using adjoint-based approaches , 2009 .

[31]  Haitao Liao,et al.  Efficient sensitivity analysis method for chaotic dynamical systems , 2016, J. Comput. Phys..

[32]  Steven A Gomez,et al.  Parallel multigrid for large-scale least squares sensitivity , 2013 .

[33]  J. D. Farmer,et al.  Optimal shadowing and noise reduction , 1991 .

[34]  Boris Diskin,et al.  Discrete Adjoint-Based Design for Unsteady Turbulent Flows on Dynamic Overset Unstructured Grids , 2012 .

[35]  M. J. Rimlinger,et al.  Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers , 1997 .

[36]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[37]  Youcef Saad,et al.  A Basic Tool Kit for Sparse Matrix Computations , 1990 .

[38]  G. Eyink,et al.  Ruelle's linear response formula, ensemble adjoint schemes and Lévy flights , 2004 .

[39]  Qiqi Wang,et al.  Sensitivity analysis on chaotic dynamical systems by Non-Intrusive Least Squares Shadowing (NILSS) , 2016, J. Comput. Phys..

[40]  D. Venditti,et al.  Grid adaptation for functional outputs: application to two-dimensional inviscid flows , 2002 .

[41]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[42]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .