Contracts as specifications for dynamical systems in driving variable form

This paper introduces assume/guarantee contracts on continuous-time control systems, hereby extending contract theories for discrete systems to certain new model classes and specifications. Contracts are regarded as formal characterizations of control specifications, providing an alternative to specifications in terms of dissipativity properties or set-invariance. The framework has the potential to capture a richer class of specifications more suitable for complex engineering systems. The proposed contracts are supported by results that enable the verification of contract implementation and the comparison of contracts. These results are illustrated by an example of a vehicle following system.

[1]  Roberto Passerone,et al.  Multiple Viewpoint Contract-Based Specification and Design , 2008, FMCO.

[2]  J. Willems The Behavioral Approach to Open and Interconnected Systems , 2007, IEEE Control Systems.

[3]  J. Willems Dissipative dynamical systems part I: General theory , 1972 .

[4]  George J. Pappas Bisimilar linear systems , 2003, Autom..

[5]  Harry L. Trentelman,et al.  Control theory for linear systems , 2002 .

[6]  Noorma Yulia Megawati,et al.  Bisimulation equivalence of differential-algebraic systems , 2018, Int. J. Control.

[7]  J. Pearson Linear multivariable control, a geometric approach , 1977 .

[8]  J. Willems Input-output and state-space representations of finite-dimensional linear time-invariant systems , 1983 .

[9]  A. J. van der Schaft Equivalence of dynamical systems by bisimulation , 2004, IEEE Transactions on Automatic Control.

[10]  Antoine Girard,et al.  On the Composition of Discrete and Continuous-time Assume-Guarantee Contracts for Invariance , 2018, 2018 European Control Conference (ECC).

[11]  Alberto L. Sangiovanni-Vincentelli,et al.  Contracts for System Design , 2018, Found. Trends Electron. Des. Autom..

[12]  A. Rantzer,et al.  System analysis via integral quadratic constraints , 1997, IEEE Trans. Autom. Control..

[13]  G. Basile,et al.  Controlled and conditioned invariants in linear system theory , 1992 .

[14]  Kim G. Larsen,et al.  Moving from Specifications to Contracts in Component-Based Design , 2012, FASE.

[15]  Murat Arcak,et al.  Networks of Dissipative Systems: Compositional Certification of Stability, Performance, and Safety , 2016 .

[16]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[17]  Alberto L. Sangiovanni-Vincentelli,et al.  Taming Dr. Frankenstein: Contract-Based Design for Cyber-Physical Systems , 2012, Eur. J. Control.

[18]  Mrdjan J. Jankovic,et al.  Constructive Nonlinear Control , 2011 .

[19]  Sanjit A. Seshia,et al.  A Small Gain Theorem for Parametric Assume-Guarantee Contracts , 2017, HSCC.

[20]  Arjan van der Schaft,et al.  Equivalence of hybrid dynamical systems , 2004 .

[21]  Karl H. Johansson,et al.  Heavy-Duty Vehicle Platooning for Sustainable Freight Transportation: A Cooperative Method to Enhance Safety and Efficiency , 2015, IEEE Control Systems.

[22]  Arjan van der Schaft,et al.  Compositional analysis for linear systems , 2010, Syst. Control. Lett..

[23]  A. Sangiovanni-Vincentelli,et al.  Frankenstein : Contract-Based Design for Cyber-Physical Systems ∗ g , 2013 .

[24]  Bertrand Meyer,et al.  Applying 'design by contract' , 1992, Computer.

[25]  Diana Bohm,et al.  L2 Gain And Passivity Techniques In Nonlinear Control , 2016 .

[26]  Petros A. Ioannou,et al.  Autonomous intelligent cruise control , 1993 .

[27]  Paulo Tabuada,et al.  Verification and Control of Hybrid Systems - A Symbolic Approach , 2009 .