An augmented Lagrangian fish swarm based method for global optimization

This paper presents an augmented Lagrangian methodology with a stochastic population based algorithm for solving nonlinear constrained global optimization problems. The method approximately solves a sequence of simple bound global optimization subproblems using a fish swarm intelligent algorithm. A stochastic convergence analysis of the fish swarm iterative process is included. Numerical results with a benchmark set of problems are shown, including a comparison with other stochastic-type algorithms.

[1]  Nicholas I. M. Gould,et al.  Convergence Properties of an Augmented Lagrangian Algorithm for Optimization with a Combination of General Equality and Linear Constraints , 1996, SIAM J. Optim..

[2]  Hitoshi Iba,et al.  Frontiers in Evolutionary Robotics , 2008 .

[3]  José Mario Martínez,et al.  Augmented Lagrangian methods under the constant positive linear dependence constraint qualification , 2007, Math. Program..

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  V. Torczon,et al.  A GLOBALLY CONVERGENT AUGMENTED LAGRANGIAN ALGORITHM FOR OPTIMIZATION WITH GENERAL CONSTRAINTS AND SIMPLE BOUNDS , 2002 .

[6]  Kusum Deep,et al.  A self-organizing migrating genetic algorithm for constrained optimization , 2008, Appl. Math. Comput..

[7]  Robert Michael Lewis,et al.  A Globally Convergent Augmented Lagrangian Pattern Search Algorithm for Optimization with General Constraints and Simple Bounds , 2002, SIAM J. Optim..

[8]  Masao Fukushima,et al.  Heuristic pattern search and its hybridization with simulated annealing for nonlinear global optimization , 2004, Optim. Methods Softw..

[9]  Jorge J. Moré,et al.  Benchmarking optimization software with performance profiles , 2001, Math. Program..

[10]  Yong Wang,et al.  Optimal Multiuser Detection with Artificial Fish Swarm Algorithm , 2007, ICIC.

[11]  Min-Jea Tahk,et al.  A hybrid optimization method of evolutionary and gradient search , 2007 .

[12]  M. Montaz Ali,et al.  Solving nonlinearly constrained global optimization problem via an auxiliary function method , 2009 .

[13]  Xuefeng Yan,et al.  A novel adaptive differential evolution algorithm with application to estimate kinetic parameters of oxidation in supercritical water , 2009 .

[14]  Ana Maria A. C. Rocha,et al.  Fish swarm intelligent algorithm for bound constrained global optimization , 2009 .

[15]  Shiyuan Yang,et al.  Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm , 2007, Inf. Process. Lett..

[16]  Sandra Paterlini,et al.  Using differential evolution to improve the accuracy of bank rating systems , 2007, Comput. Stat. Data Anal..

[17]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[18]  Ioannis G. Tsoulos,et al.  Solving constrained optimization problems using a novel genetic algorithm , 2009, Appl. Math. Comput..

[19]  Duan Li,et al.  On the Convergence of Augmented Lagrangian Methods for Constrained Global Optimization , 2007, SIAM J. Optim..

[20]  Afonso C. C. Lemonge,et al.  An Adaptive Penalty Method for Genetic Algorithms in Constrained Optimization Problems , 2008 .

[21]  Carlos A. Coello Coello,et al.  A constraint-handling mechanism for particle swarm optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[22]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[23]  Jian-Wei Ma,et al.  An improved artificial fish-swarm algorithm and its application in feed-forward neural networks , 2005, 2005 International Conference on Machine Learning and Cybernetics.

[24]  Shu-Cherng Fang,et al.  On the Convergence of a Population-Based Global Optimization Algorithm , 2004, J. Glob. Optim..

[25]  M. J. D. Powell,et al.  A method for nonlinear constraints in minimization problems , 1969 .

[26]  Michael N. Vrahatis,et al.  Memetic particle swarm optimization , 2007, Ann. Oper. Res..

[27]  Zhi-You Wu,et al.  A filled function method for constrained global optimization , 2007, J. Glob. Optim..

[28]  R. Rockafellar The multiplier method of Hestenes and Powell applied to convex programming , 1973 .

[29]  Min Huang,et al.  An Artificial Fish Swarm Algorithm Based and ABC Supported QoS Unicast Routing Scheme in NGI , 2006, ISPA Workshops.

[30]  José Mario Martínez,et al.  Global minimization using an Augmented Lagrangian method with variable lower-level constraints , 2010, Math. Program..

[31]  José Mario Martínez,et al.  On Augmented Lagrangian Methods with General Lower-Level Constraints , 2007, SIAM J. Optim..

[32]  Nikos E. Mastorakis,et al.  Image Segmentation with Improved Artificial Fish Swarm Algorithm , 2009 .

[33]  Hezhi Luo,et al.  Convergence properties of augmented Lagrangian methods for constrained global optimization , 2008, Optim. Methods Softw..

[34]  O. Mangasarian Unconstrained Lagrangians in Nonlinear Programming , 1975 .

[35]  Jing J. Liang,et al.  Problem Deflnitions and Evaluation Criteria for the CEC 2006 Special Session on Constrained Real-Parameter Optimization , 2006 .

[36]  Erwie Zahara,et al.  Solving constrained optimization problems with hybrid particle swarm optimization , 2008 .

[37]  R. Rockafellar Augmented Lagrange Multiplier Functions and Duality in Nonconvex Programming , 1974 .

[38]  R. Tyrrell Rockafellar,et al.  Lagrange Multipliers and Optimality , 1993, SIAM Rev..

[39]  M. Hestenes Multiplier and gradient methods , 1969 .

[40]  José Mario Martínez,et al.  Numerical Comparison of Augmented Lagrangian Algorithms for Nonconvex Problems , 2005, Comput. Optim. Appl..

[41]  Janez Puhan,et al.  DESA: a new hybrid global optimization method and its application to analog integrated circuit sizing , 2009, J. Glob. Optim..

[42]  Antonio M. Lallena,et al.  Ant colony method to control variance reduction techniques in the Monte Carlo simulation of clinical electron linear accelerators of use in cancer therapy , 2010, J. Comput. Appl. Math..