Convergence results for invariant curve algorithms
暂无分享,去创建一个
[1] E. Thoulouze-Pratt,et al. Analyse numérique du comportement d'une solution presque périodique d'une équation différentielle périodique par une méthode des sections , 1982 .
[2] On a problem of forced nonlinear oscillations. numerical example of bifurcation into an invariant torus , 1978 .
[3] W. Rheinboldt. Numerical analysis of parametrized nonlinear equations , 1986 .
[4] Existence theorem of an invariant torus of solutions to a periodic differential system , 1981 .
[5] N. Levinson,et al. Small Periodic Pertubations of an Autonomous System with a Stable Orbit , 1950 .
[6] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[7] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[8] Hüseyin Koçak,et al. Differential and difference equations through computer experiments , 1986 .
[9] Rutherford Aris,et al. Numerical computation of invariant circles of maps , 1985 .
[10] D. Aronson,et al. Bifurcations from an invariant circle for two-parameter families of maps of the plane: A computer-assisted study , 1982 .
[11] M. van Veldhuizen,et al. On the numerical approximation of the rotation number , 1988 .
[12] J. Hale,et al. Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.
[13] M. van Veldhuizen. A new algorithm for the numerical approximation of an invariant curve , 1987 .