Balancing Neumann-Neumann Preconditioners for the Mixed Formulation of Almost-Incompressible Linear Elasticity
暂无分享,去创建一个
[1] E. Polak. Introduction to linear and nonlinear programming , 1973 .
[2] Gene H. Golub,et al. Matrix computations , 1983 .
[3] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[4] J. Pasciak,et al. A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems , 1988 .
[5] R. Glowinski,et al. Variational formulation and algorithm for trace operation in domain decomposition calculations , 1988 .
[6] Alfio Quarteroni,et al. A relaxation procedure for domain decomposition methods using finite elements , 1989 .
[7] J. Pasciak,et al. A domain decomposition technique for Stokes problems , 1990 .
[8] Y. D. Roeck. Résolution sur ordinateurs multiprocesseurs de problèmes d'élasticité par décomposition de domaines , 1991 .
[9] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[10] Ragnar Winther,et al. A Preconditioned Iterative Method for Saddlepoint Problems , 1992, SIAM J. Matrix Anal. Appl..
[11] O. Widlund,et al. Schwarz Methods of Neumann-Neumann Type for Three-Dimensional Elliptic Finite Element Problems , 1993 .
[12] J. Mandel. Balancing domain decomposition , 1993 .
[13] Paul Fischer,et al. Spectral element methods for large scale parallel Navier—Stokes calculations , 1994 .
[14] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[15] A. Wathen,et al. Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners , 1994 .
[16] P. Tallec. Domain decomposition methods in computational mechanics , 1994 .
[17] Barry F. Smith,et al. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .
[18] Mario A. Casarin. Schwarz Preconditioners for Spectral and Mortar Finite Element Methods with Applications to Incompressible Fluids , 1996 .
[19] William Gropp,et al. Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.
[20] Marian Brezina,et al. Balancing domain decomposition for problems with large jumps in coefficients , 1996, Math. Comput..
[21] Howard C. Elman,et al. Fast Nonsymmetric Iterations and Preconditioning for Navier-Stokes Equations , 1996, SIAM J. Sci. Comput..
[22] Paul Fischer,et al. An Overlapping Schwarz Method for Spectral Element Solution of the Incompressible Navier-Stokes Equations , 1997 .
[23] Abani K. Patra,et al. Non-overlapping domain decomposition methods for adaptive hp approximations of the Stokes problem with discontinuous pressure fields , 1997 .
[24] Luca F. Pavarino,et al. Preconditioned conjugate residual methods for mixed spectral discretizations of elasticity and Stokes problems , 1997 .
[25] Luca F. Pavarino,et al. Preconditioned Mixed Spectral Element Methods for Elasticity and Stokes Problems , 1998, SIAM J. Sci. Comput..
[26] P. F. Fischer,et al. An overlapping Schwarz method for spectral element simulation of three-dimensional incompressible flows , 1998 .
[27] Axel Klawonn,et al. An Optimal Preconditioner for a Class of Saddle Point Problems with a Penalty Term , 1995, SIAM J. Sci. Comput..
[28] Axel Klawonn,et al. Block-Triangular Preconditioners for Saddle Point Problems with a Penalty Term , 1998, SIAM J. Sci. Comput..
[29] L. Pavarino,et al. Overlapping Schwarz methods for mixed linear elasticity and Stokes problems , 1998 .
[30] O. Widlund,et al. FETI and Neumann--Neumann Iterative Substructuring Methods: Connections and New Results , 1999 .
[31] EINAR M. R NQUIST,et al. Domain Decomposition Methods for the Steady Stokes Equations , 1999 .
[32] Olof B. Widlund,et al. Iterative Substructuring Methods for Spectral Element Discretizations of Elliptic Systems. II: Mixed Methods for Linear Elasticity and Stokes Flow , 1999, SIAM J. Numer. Anal..
[33] Mark Ainsworth,et al. Domain decomposition preconditioners for p and hp finite element approximation of Stokes equations , 1999 .
[34] Olof B. Widlund,et al. A Domain Decomposition Method with Lagrange Multipliers and Inexact Solvers for Linear Elasticity , 2000, SIAM J. Sci. Comput..
[35] O. Widlund,et al. Iterative substructuring methods for spectral element discretizations of elliptic systems in three dimensions , 2000 .
[36] Luca F. Pavarino,et al. A comparison of overlapping Schwarz methods and block preconditioners for saddle point problems , 2000, Numer. Linear Algebra Appl..
[37] Jacques Laminie,et al. On the domain decomposition method for the generalized Stokes problem with continuous pressure , 2000 .
[38] O. Widlund,et al. Balancing Neumann‐Neumann methods for incompressible Stokes equations , 2001 .
[39] Andrew J. Wathen,et al. Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations , 2002, Numerische Mathematik.
[40] Jiao Li. Dual-primal FETI methods for stationary Stokes and Navier--Stokes equations , 2002 .
[41] Olof B. Widlund,et al. Balancing Neumann-Neumann preconditioners for mixed approximations of heterogeneous problems in linear elasticity , 2003, Numerische Mathematik.
[42] Pierre Gosselet,et al. On the initial estimate of interface forces in FETI methods , 2003, 1208.6380.
[43] Clark R. Dohrmann,et al. Convergence of a balancing domain decomposition by constraints and energy minimization , 2002, Numer. Linear Algebra Appl..
[44] Jing Li,et al. A Dual-Primal FETI method for incompressible Stokes equations , 2005, Numerische Mathematik.