General existence theorems for unilateral problems in continuum mechanics

The problem of minimizing a possibly non-convex and non-coercive functional is studied. Either necessary or sufficient conditions for the existence of solutions are given, involving a generalized recession functional, whose properties are discussed thoroughly. The abstract results are applied to find existence of equilibrium configurations of a deformable body subject to a system of applied forces and partially constrained to lie inside a possibly unbounded region.

[1]  C. B. Morrey Multiple Integrals in the Calculus of Variations , 1966 .

[2]  David Kinderlehrer,et al.  Remarks about Signorini's problem in linear elasticity , 1981 .

[3]  Roger Temam,et al.  Functions of bounded deformation , 1980 .

[4]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[5]  M. Schatzman Problèmes aux limites non linéaires, non coercifs , 1973 .

[6]  R. Temam,et al.  Problèmes mathématiques en plasticité , 1983 .

[7]  Leonida Tonelli Fondamenti di calcolo delle variazioni , 1921 .

[8]  D. Kinderlehrer,et al.  Existence, uniqueness, and regularity results for the two-body contact problem , 1987 .

[9]  Franco Tomarelli,et al.  Some existence results on noncoercive variational inequalities , 1986 .

[10]  Dirichlet problem for demi-coercive functionals , 1986 .

[11]  P. G. Ciarlet,et al.  Unilateral problems in nonlinear, three-dimensional elasticity , 1985 .

[12]  C. Baiocchi,et al.  Variational and quasivariational inequalities: Applications to free boundary problems , 1983 .

[13]  Charles B. Morrey,et al.  QUASI-CONVEXITY AND THE LOWER SEMICONTINUITY OF MULTIPLE INTEGRALS , 1952 .

[14]  G. Stampacchia,et al.  On the regularity of the solution of a variational inequality , 1969 .

[15]  Hans Hahn Fondamenti di calcolo delle variazioni , 1926 .

[16]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[17]  G. C. Shephard,et al.  Convex bodies and convexity on Grassmann cones , 1962 .

[18]  D. Kinderlehrer Estimates for the solution and its stability in Signorini's problem , 1982 .

[19]  Gianni Dal Maso,et al.  Γ-Limits of obstacles , 1981 .

[20]  M. Giaquinta,et al.  Researches on the equilibrium of masonry structures , 1985 .

[21]  J. Lions,et al.  Inequalities in mechanics and physics , 1976 .

[22]  J. Ball Convexity conditions and existence theorems in nonlinear elasticity , 1976 .

[23]  Nicola Fusco,et al.  Semicontinuity problems in the calculus of variations , 1984 .

[24]  H. Fédérer,et al.  The Lebesgue Set of a Function whose Distribution Derivatives are p-th Power Summable , 1972 .

[25]  G. Anzellotti A class of convex non-coercive functionals and masonry-like materials , 1985 .

[26]  P. G. Ciarlet,et al.  Injectivity and self-contact in nonlinear elasticity , 1987 .

[27]  M. De Handbuch der Physik , 1957 .