Optimal error bound and simplified Tikhonov regularization method for a backward problem for the time-fractional diffusion equation

In this paper, we consider a backward problem for a time-fractional diffusion equation. Such a problem is ill-posed. The optimal error bound for the problem under a source condition is analyzed. A simplified Tikhonov regularization method is utilized to solve the problem, and its convergence rates are analyzed under an a priori regularization parameter choice rule and an a posteriori regularization parameter choice rule, respectively. Numerical examples show that the proposed regularization method is effective and stable, and both parameter choice rules work well.

[1]  Seth F. Oppenheimer,et al.  Quasireversibility Methods for Non-Well-Posed Problems , 1994 .

[2]  A. Kirsch An Introduction to the Mathematical Theory of Inverse Problems , 1996, Applied Mathematical Sciences.

[3]  Harry Pollard,et al.  The completely monotonic character of the Mittag-Leffler function $E_a \left( { - x} \right)$ , 1948 .

[4]  Xiang-Tuan Xiong,et al.  Two numerical methods for solving a backward heat conduction problem , 2006, Appl. Math. Comput..

[5]  Xiang-Tuan Xiong,et al.  Fourier regularization for a backward heat equation , 2007 .

[6]  Hichem Sahli,et al.  A non-local boundary value problem method for parabolic equations backward in time , 2008 .

[7]  Chu-Li Fu,et al.  Simplified Tikhonov and Fourier regularization methods on a general sideways parabolic equation , 2004 .

[8]  Ulrich Tautenhahn Optimal Stable Solution of Cauchy Problems for Elliptic Equations , 1996 .

[9]  Ulrich Tautenhahn,et al.  Optimality for ill-posed problems under general source conditions , 1998 .

[10]  Enrico Scalas,et al.  Fractional Calculus and Continuous-Time Finance III : the Diffusion Limit , 2001 .

[11]  B. Hofmann,et al.  Conditional Stability Estimates for Ill-Posed PDE Problems by Using Interpolation , 2013 .

[12]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[13]  H DinhNho,et al.  A mollification method for ill-posed problems , 1994 .

[14]  Vitalii P. Tanana,et al.  Theory of Linear Ill-Posed Problems and its Applications , 2002 .

[15]  Fan Yang,et al.  The method of simplified Tikhonov regularization for dealing with the inverse time-dependent heat source problem , 2010, Comput. Math. Appl..

[16]  A. Carasso Determining Surface Temperatures from Interior Observations , 1982 .

[17]  Karen A. Ames,et al.  A Kernel-based Method for the Approximate Solution of Backward Parabolic Problems , 1997 .

[18]  N. S. Mera The method of fundamental solutions for the backward heat conduction problem , 2005 .

[19]  Chein-Shan Liu Group preserving scheme for backward heat conduction problems , 2004 .

[20]  Nguyen Van Duc,et al.  Regularization of parabolic equations backward in time by a non-local boundary value problem method , 2010 .

[21]  P. Mathé,et al.  Geometry of linear ill-posed problems in variable Hilbert scales Inverse Problems 19 789-803 , 2003 .

[22]  Thorsten Hohage,et al.  Regularization of exponentially ill-posed problems , 2000 .

[23]  Stephen Martin Kirkup,et al.  Solution of inverse diffusion problems by operator-splitting methods , 2002 .

[24]  Diego A. Murio,et al.  Implicit finite difference approximation for time fractional diffusion equations , 2008, Comput. Math. Appl..

[25]  I. Podlubny Fractional differential equations , 1998 .

[26]  Peter Mathé,et al.  Regularization under general noise assumptions , 2011 .

[27]  Chu-Li Fu,et al.  A simplified Tikhonov regularization method for determining the heat source , 2010 .

[28]  Masahiro Yamamoto,et al.  Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems , 2011 .

[29]  Ying Zhang,et al.  Inverse source problem for a fractional diffusion equation , 2011 .

[30]  R. Gorenflo,et al.  Fractional calculus and continuous-time finance II: the waiting-time distribution , 2000, cond-mat/0006454.

[31]  Fawang Liu,et al.  Implicit difference approximation for the time fractional diffusion equation , 2006 .

[32]  K. Diethelm Mittag-Leffler Functions , 2010 .

[33]  Mohammad F. Al-Jamal A backward problem for the time‐fractional diffusion equation , 2017 .

[34]  Ting Wei,et al.  Two regularization methods for solving a Riesz–Feller space-fractional backward diffusion problem , 2010 .

[35]  Ralph E. Showalter,et al.  The final value problem for evolution equations , 1974 .

[36]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[37]  K. Miller,et al.  Completely monotonic functions , 2001 .

[38]  C. W. Groetsch,et al.  The theory of Tikhonov regularization for Fredholm equations of the first kind , 1984 .

[39]  R. Gorenflo,et al.  Fractional calculus and continuous-time finance , 2000, cond-mat/0001120.

[40]  Rina Schumer,et al.  Multiscaling fractional advection‐dispersion equations and their solutions , 2003 .

[41]  Derek B. Ingham,et al.  An iterative boundary element method for solving the one-dimensional backward heat conduction problem , 2001 .

[42]  C. Micchelli,et al.  Optimal Estimation of Linear Operators in Hilbert Spaces from Inaccurate Data , 1979 .

[43]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[44]  Arak M. Mathai,et al.  Mittag-Leffler Functions and Their Applications , 2009, J. Appl. Math..

[45]  D. Benson,et al.  Eulerian derivation of the fractional advection-dispersion equation. , 2001, Journal of contaminant hydrology.

[46]  Peter Richmond,et al.  Waiting time distributions in financial markets , 2002 .