Data-driven system to predict academic grades and dropout
暂无分享,去创建一个
[1] Fernando Nogueira,et al. Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning , 2016, J. Mach. Learn. Res..
[2] Ana Belén Domínguez Gutiérrez,et al. Permanencia en la universidad: la importancia de un buen comienzo , 2016 .
[3] T. McKay,et al. Computer-Tailored Student Support in Introductory Physics , 2015, PloS one.
[4] Mònica Feixas,et al. Understanding Catalan university dropout from a cross-national approach , 2015 .
[5] M. Garcı́a-Artiles,et al. Un modelo de regresión logística asimétrico que puede explicar la probabilidad de éxito en el rendimiento académico An Asymmetric Logit Model to explain the likelihood of success in academic results , 2015 .
[6] Rebeca Cerezo Menéndez,et al. Predicción del abandono universitario: variables explicativas y medidas de prevención , 2015 .
[7] Vincent Donche,et al. Profiling First-Year Students in STEM Programs Based on Autonomous Motivation and Academic Self-Concept and Relationship with Academic Achievement , 2014, PloS one.
[8] Mònica Feixas,et al. Student dropout rates in Catalan universities: profile and motives for disengagement , 2014 .
[9] Ahmet Tekin. Early Prediction of Students' Grade Point Averages at Graduation: A Data Mining Approach. , 2014 .
[10] L. C. Duque. A framework for analysing higher education performance: students' satisfaction, perceived learning outcomes, and dropout intentions , 2014 .
[11] A. Gil. El abandono académico: análisis y propuestas paliativas. Dos proyectos de la Universidad Politécnica de Madrid , 2014 .
[12] Juan C. Duque,et al. Learning outcomes and dropout intentions: an analytical model for Spanish universities , 2013 .
[13] Mehrbakhsh Nilashi,et al. Collaborative filtering recommender systems , 2013 .
[14] Antonello Maruotti,et al. How individual characteristics affect university students drop-out: a semiparametric mixed-effects model for an Italian case study , 2011 .
[15] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[16] Hebe Goldenhersh,et al. Deserción estudiantil: desafíos de la universidad pública en un horizonte de inclusión , 2011 .
[17] Guy Shani,et al. Evaluating Recommendation Systems , 2011, Recommender Systems Handbook.
[18] Wes McKinney,et al. Data Structures for Statistical Computing in Python , 2010, SciPy.
[19] H. Wit. European Integration in Higher Education: The Bologna Process Towards a European Higher Education Area , 2007 .
[20] Vincent Tinto,et al. Research and Practice of Student Retention: What Next? , 2006 .
[21] Bernhard Schölkopf,et al. A tutorial on support vector regression , 2004, Stat. Comput..
[22] J. Ross Quinlan,et al. Induction of Decision Trees , 1986, Machine Learning.
[23] David R. Karger,et al. Tackling the Poor Assumptions of Naive Bayes Text Classifiers , 2003, ICML.
[24] Eric R. Ziegel,et al. The Elements of Statistical Learning , 2003, Technometrics.
[25] K. Zou,et al. Correlation and simple linear regression. , 2003, Radiology.
[26] Nitesh V. Chawla,et al. SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..
[27] C. Y. Peng,et al. An Introduction to Logistic Regression Analysis and Reporting , 2002 .
[28] Claude Montmarquette,et al. The determinants of university dropouts: a bivariate probability model with sample selection , 2001 .
[29] E. Cohn. Education at a Glance--OECD Indicators 1998 Edition;: Organisation for Economic Co-Operation and Development, Paris, 1998, 432 pages, soft cover, $49.00 (FF 295; DM 88) , 2000 .
[30] Nello Cristianini,et al. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .
[31] Pat Langley,et al. Induction of One-Level Decision Trees , 1992, ML.
[32] W. Knight. A Computer Method for Calculating Kendall's Tau with Ungrouped Data , 1966 .