A generalized finite-difference time-domain scheme for solving nonlinear Schrödinger equations

Abstract Recently, we have developed a generalized finite-difference time-domain (G-FDTD) method for solving the time dependent linear Schrodinger equation. The G-FDTD is explicit and permits an accurate solution with simple computation, and also relaxes the stability condition as compared with the original FDTD scheme. In this article, we extend the G-FDTD scheme to solve nonlinear Schrodinger equations. Using the discrete energy method, the G-FDTD scheme is shown to satisfy a discrete analogous form of the conservation law. The obtained scheme is tested by three examples of soliton propagation, including bright and dark solitons as well as a 2D case. Compared with other popular existing methods, numerical results show that the present scheme provides a more accurate solution.

[1]  V. V. Krylov,et al.  A method for the numerical solution of problems of the dynamics of wave fields with singularities , 1977 .

[2]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[3]  Tony F. Chan,et al.  Stable explicit schemes for equations of the Schro¨dinger type , 1986 .

[4]  P. B. Visscher,et al.  A fast explicit algorithm for the time‐dependent Schrödinger equation , 1991 .

[5]  J. Satsuma,et al.  B Initial Value Problems of One-Dimensional self-Modulation of Nonlinear Waves in Dispersive Media (Part V. Initial Value Problems) , 1975 .

[6]  Margarit Rizea,et al.  Efficient numerical solution of the time-dependent Schrödinger equation for deep tunneling , 2003 .

[7]  Weizhu Bao,et al.  Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrödinger equation , 2013, J. Comput. Phys..

[8]  Christo I. Christov,et al.  Strong coupling of Schrödinger equations: Conservative scheme approach , 2005, Math. Comput. Simul..

[9]  W. Bao Numerical Methods for the Nonlinear Schrödinger Equation with Nonzero Far-field Conditions , 2004 .

[10]  Georgios Akrivis,et al.  Finite difference discretization of the cubic Schrödinger equation , 1993 .

[11]  D. S. Citrin,et al.  Time-domain simulation of two electrons in a quantum dot , 2001 .

[12]  Athanassios G. Bratsos,et al.  A discrete Adomian decomposition method for discrete nonlinear Schrödinger equations , 2008, Appl. Math. Comput..

[13]  Peter J. Bryant Nonlinear wave groups in deep water , 1979 .

[14]  Qianshun Chang,et al.  Difference Schemes for Solving the Generalized Nonlinear Schrödinger Equation , 1999 .

[15]  J. G. Verwer,et al.  Conerservative and Nonconservative Schemes for the Solution of the Nonlinear Schrödinger Equation , 1986 .

[16]  Shibata Absorbing boundary conditions for the finite-difference time-domain calculation of the one-dimensional Schrödinger equation. , 1991, Physical review. B, Condensed matter.

[17]  J. C. Newby,et al.  A finite-difference method for solving the cubic Schro¨dinger equation , 1997 .

[18]  Matthias Ehrhardt,et al.  Discrete transparent boundary conditions for the Schrödinger equation: fast calculation, approximation, and stability , 2003 .

[19]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[20]  M. Lax,et al.  Channeling of Intense Electromagnetic Beams , 1981 .

[21]  E. Süli,et al.  Numerical Solution of Partial Differential Equations , 2014 .

[22]  Jérémie Szeftel,et al.  Design of Absorbing Boundary Conditions for Schrödinger Equations in Rd , 2004, SIAM J. Numer. Anal..

[23]  Andrew G. Glen,et al.  APPL , 2001 .

[24]  Chunxiong Zheng,et al.  Exact nonreflecting boundary conditions for one-dimensional cubic nonlinear Schrödinger equations , 2006, J. Comput. Phys..

[25]  Qian-shun Chang,et al.  A numerical method for a system of generalized nonlinear Schro¨dinger equations , 1986 .

[26]  Siegmund Brandt,et al.  The picture book of quantum mechanics , 2012 .

[27]  J. M. Sanz-Serna,et al.  Methods for the numerical solution of the nonlinear Schroedinger equation , 1984 .

[28]  L. Zhang A HIGH ACCURATE AND CONSERVATIVE FINITE DIFFERENCE SCHEME FOR NONLINEAR SCHRODINGER EQUATION , 2005 .

[29]  Christophe Besse,et al.  A Review of Transparent and Artificial Boundary Conditions Techniques for Linear and Nonlinear Schrödinger Equations , 2008 .

[30]  Houde Han,et al.  EXACT ARTIFICIAL BOUNDARY CONDITIONS FOR SCHRÖDINGER EQUATION IN R2∗ , 2004 .

[31]  Weizhong Dai,et al.  An unconditionally stable three-level explicit difference scheme for the Schro¨dinger equation with a variable coefficient , 1992 .

[32]  Christophe Besse,et al.  Absorbing Boundary Conditions for General Nonlinear Schrödinger Equations , 2011, SIAM J. Sci. Comput..

[33]  Akira Hasegawa,et al.  Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion , 1973 .

[34]  Heli Chen,et al.  The quadrature discretization method (QDM) in the solution of the Schrödinger equation with nonclassical basis functions , 1996 .

[35]  Lixin Wu,et al.  DuFort--Frankel-Type Methods for Linear and Nonlinear Schrödinger Equations , 1996 .

[36]  Michel C. Delfour,et al.  Finite-difference solutions of a non-linear Schrödinger equation , 1981 .

[37]  R. H. Hardin Application of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations , 1973 .

[38]  Chusei Namba,et al.  Modulated langmuir waves and nonlinear Landau damping , 1978 .

[39]  T. Utsumi,et al.  Solutions of the 1D Coupled Nonlinear Schrodinger Equations by the CIP-BS Method , 2006 .

[40]  Pavel Winternitz,et al.  Lie symmetries of a generalised nonlinear Schrodinger equation: I. The symmetry group and its subgroups , 1988 .

[41]  Hong Jiang,et al.  Absorbing Boundary Conditions for the Schrödinger Equation , 1999, SIAM J. Sci. Comput..

[42]  Heli Chen,et al.  The Quadrature Discretization Method (QDM) in comparison with other numerical methods of solution of the Fokker–Planck equation for electron thermalization , 1998 .

[43]  M. A. Christou Numerical Investigation of the Nonlinear Schrödinger Equation with Saturation , 2008 .

[44]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[45]  B. M. Fulk MATH , 1992 .

[46]  S. K. Adhikari,et al.  Fortran programs for the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap , 2009, Comput. Phys. Commun..

[47]  Weizhong Dai,et al.  A Generalized FDTD Method with Absorbing Boundary Condition for Solving a Time-Dependent Linear Schrödinger Equation , 2012 .

[48]  J. G. Verwer,et al.  Conservative and nonconservative schemes for the solution of the nonlinear Schroedinger equation , 1984 .

[49]  J. R. Morris,et al.  Time-dependent propagation of high energy laser beams through the atmosphere , 1976 .

[50]  M. Radziunas,et al.  On Convergence and Stability of the Explicit Difference Method for Solution of Nonlinear Schrödinger Equations , 1999 .

[51]  Ahmet S. Cakmak,et al.  Explicit integration method for the time‐dependent Schrodinger equation for collision problems , 1978 .

[52]  Enrique A. Navarro,et al.  Analysis of the finite difference time domain technique to solve the Schrödinger equation for quantum devices , 2004 .

[53]  Jie Shen,et al.  Spectral and High-Order Methods with Applications , 2006 .

[54]  Heli Chen,et al.  The Quadrature Discretization Method (QDM) in the solution of the Schrödinger equation , 1998 .

[55]  A. B. Shamardan The numerical treatment of the nonlinear Schrödinger equation , 1990 .

[56]  N. N. Yanenko,et al.  The Method of Fractional Steps , 1971 .

[57]  S. Orszag Accurate solution of the Orr–Sommerfeld stability equation , 1971, Journal of Fluid Mechanics.

[58]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[59]  D. S. Citrin,et al.  Time-domain simulation of a universal quantum gate , 2004 .

[60]  Georgios Akrivis,et al.  Solving the systems of equations arising in the discretization of some nonlinear p.d.e.'s by implicit Runge-Kutta methods , 1997 .

[61]  Zacharoula Kalogiratou,et al.  Asymptotically symplectic integrators of 3rd and 4th order for the numerical solution of the Schrödinger equation , 2003 .

[62]  Christophe Besse,et al.  Order Estimates in Time of Splitting Methods for the Nonlinear Schrödinger Equation , 2002, SIAM J. Numer. Anal..

[63]  Dennis M. Sullivan,et al.  Electromagnetic Simulation Using the FDTD Method , 2000 .

[64]  Georgios Akrivis,et al.  On optimal order error estimates for the nonlinear Schro¨dinger equation , 1993 .

[65]  Weizhu Bao,et al.  An Explicit Unconditionally Stable Numerical Method for Solving Damped Nonlinear Schrödinger Equations with a Focusing Nonlinearity , 2003, SIAM Journal on Numerical Analysis.

[66]  Patrick L. Nash,et al.  Efficient Finite Difference Solutions to the Time-Dependent Schrödinger Equation , 1997 .

[67]  Warren E. Ferguson,et al.  Relationship between Benjamin–Feir instability and recurrence in the nonlinear Schrödinger equation , 1978 .

[68]  Georgios E. Zouraris,et al.  On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation , 2001 .

[69]  B Jazbi,et al.  ON THE NUMERICAL SOLUTION OF ONE DIMENSIONAL SCHRODINGER EQUATION WITH BOUNDARY CONDITIONS INVOLVING FRACTIONAL DIFFERENTIAL OPERATORS , 2008 .

[70]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[71]  Αθανάσιος Γ. Μπράτσος A linearized finite-difference scheme for the numerical solution of the nonlinear cubic Schrödinger equation , 2015 .

[72]  Kuska Absorbing boundary conditions for the Schrödinger equation on finite intervals. , 1992, Physical review. B, Condensed matter.

[73]  Marlis Hochbruck,et al.  On Magnus Integrators for Time-Dependent Schrödinger Equations , 2003, SIAM J. Numer. Anal..

[74]  Thiab R. Taha,et al.  A numerical scheme for the nonlinear Schrödinger equation , 1991 .

[75]  Michael Strickland,et al.  A parallel algorithm for solving the 3d Schrödinger equation , 2009, J. Comput. Phys..

[76]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[77]  Jianke Yang,et al.  Nonlinear Waves in Integrable and Nonintegrable Systems , 2010, Mathematical modeling and computation.

[78]  A. Wazwaz A study on linear and nonlinear Schrodinger equations by the variational iteration method , 2008 .

[79]  P. Markowich,et al.  Numerical solution of the Gross--Pitaevskii equation for Bose--Einstein condensation , 2003, cond-mat/0303239.

[80]  Weizhong Dai,et al.  A generalized finite-difference time-domain quantum method for the N-body interacting Hamiltonian , 2012, Comput. Phys. Commun..

[81]  T. Taha,et al.  Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation , 1984 .

[82]  Xiaonan Wu,et al.  A finite-difference method for the one-dimensional time-dependent schrödinger equation on unbounded domain , 2005 .

[83]  Bengt Fornberg,et al.  A numerical and theoretical study of certain nonlinear wave phenomena , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[84]  Paulsamy Muruganandam,et al.  C programs for solving the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap , 2012, Comput. Phys. Commun..

[85]  B. Herbst,et al.  Split-step methods for the solution of the nonlinear Schro¨dinger equation , 1986 .

[86]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[87]  Fumitaka Fujiwara,et al.  FDTD-Q Analyses of a Mott Insulator Quantum Phase , 2007 .

[88]  김덕영 [신간안내] Computational Electrodynamics (the finite difference time - domain method) , 2001 .

[89]  Feliksas Ivanauskas,et al.  Finite Difference Solution Methods for a System of the Nonlinear Schrödinger Equations , 2004 .

[90]  R. Luebbers,et al.  The Finite Difference Time Domain Method for Electromagnetics , 1993 .

[91]  Nobuo Yajima,et al.  A New Example of Stable Solitary Waves , 1971 .

[92]  P. Markowich,et al.  On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .

[93]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[94]  S. Descombes,et al.  An exact local error representation of exponential operator splitting methods for evolutionary problems and applications to linear Schrödinger equations in the semi-classical regime , 2010 .

[95]  Ben M. Herbst,et al.  Numerical Experience with the Nonlinear Schrödinger Equation , 1985 .

[96]  L. Ostrovsky,et al.  PROPAGATION OF MODULATED WAVES IN NONLINEAR DISPERSIVE MEDIA , 1967 .

[97]  Govind P. Agrawal,et al.  Applications of Nonlinear Fiber Optics , 2001 .

[98]  David F. Griffiths,et al.  A numerical study of the nonlinear Schrödinger equation , 1984 .

[99]  L. Gardner,et al.  B-spline finite element studies of the non-linear Schrödinger equation , 1993 .

[100]  Esteban G. Tabak,et al.  A PseudoSpectral Procedure for the Solution of Nonlinear Wave Equations with Examples from Free-Surface Flows , 1999, SIAM J. Sci. Comput..

[101]  B. Shizgal,et al.  Spectral convergence of the quadrature discretization method in the solution of the Schrodinger and Fokker-Planck equations: comparison with sinc methods. , 2006, The Journal of chemical physics.

[102]  Yu Zhiping,et al.  Solution of the time-dependent Schrödinger equation with absorbing boundary conditions , 2009 .