Evaluation of balloon and satellite water vapour measurements in the Southern tropical UTLS during the HIBISCUS campaign

Balloon water vapour in situ and remote measurements in the tropical upper troposphere and lower stratosphere (UTLS) obtained during the HIBISCUS campaign around 20 S in Brazil in February–March 2004 using a tunable diode laser ( μSDLA), a surface acoustic wave (SAW) and a Vis-NIR solar occultation spectrometer (SAOZ) on a long duration balloon, have been used for evaluating the performances of satellite borne remote water vapour instruments available at the same latitude and measurement period. In the stratosphere, HALOE displays the best precision (2.5%), followed by SAGE II (7%), MIPAS (10%), SAOZ (20–25%) and SCIAMACHY (35%), all of which show approximately constant H2O mixing ratios between 20–25 km. Compared to HALOE of ±10% accuracy between 0.1–100 hPa, SAGE II and SAOZ show insignificant biases, MIPAS is wetter by 10% and SCIAMACHY dryer by 20%. The currently available GOMOS profiles of 25% precision show a positive vertical gradient in error for identified reasons. Compared to these, the water vapour of the Reprobus Chemistry Transport Model, forced at pressures higher than 95 hPa by the ECMWF analyses, is dryer by about 1 ppmv (20%). In the lower stratosphere between 16–20 km, most notable features are the steep degradation of MIPAS precision below 18 km, and the appearance of biases between instruments far larger than their quoted total uncertainty. HALOE and Correspondence to: N. Montoux (nadege.montoux@latmos.ipsl.fr) SAGE II (after spectral adjustment for reducing the bias with HALOE at northern mid-latitudes) both show decreases of water vapour with a minimum at the tropopause not seen by other instruments or the model, possibly attributable to an increasing error in the HALOE altitude registration. Between 16–18 km where the water vapour concentration shows little horizontal variability, and where the μSDLA balloon meaurements are not perturbed by outgassing, the average mixing ratios reported by the remote sensing instruments are substantially lower than the 4–5 ppmv observed by the μSDLA. Differences between μSDLA and HALOE and SAGE II (of the order of−2 ppmv), SCIAMACHY, MIPAS and GOMOS (−1 ppmv) and SAOZ ( −0.5 ppmv), exceed the 10% uncertainty of μSDLA, implying larger systematic errors than estimated for the various instruments. In the upper troposphere, where the water vapour concentration is highly variable, AIRS v5 appears to be the most consistent within its 25% uncertainty with balloon in-situ measurements as well as ECMWF. Most of the remote measurements show less reliability in the upper troposphere, losing sensitivity possibly because of absorption line saturation in their spectral ranges (HALOE, SAGE II and SCIAMACHY), instrument noise exceeding 100% (MIPAS) or imperfect refraction correction (GOMOS). An exception is the SAOZ-balloon, employing smaller H 2O absorption bands in the troposphere. Published by Copernicus Publications on behalf of the European Geosciences Union. 5300 N. Montoux et al.: Balloon and satellite H2O measurements in the tropical UTLS

[1]  F. Guichard,et al.  Correction of Humidity Bias for Vaisala RS80-A Sondes during the AMMA 2006 Observing Period , 2008 .

[2]  Richard H. Johnson,et al.  Ten Years of Measurements of Tropical Upper-Tropospheric Water Vapor by MOZAIC. Part II: Assessing the ECMWF Humidity Analysis , 2008 .

[3]  K. Rosenlof,et al.  Trends in the temperature and water vapor content of the tropical lower stratosphere: Sea surface connection , 2008 .

[4]  Lance E. Christensen,et al.  Aura Microwave Limb Sounder upper tropospheric and lower stratospheric H2O and relative humidity with respect to ice validation , 2007 .

[5]  J. Staehelin,et al.  Trends and variability of midlatitude stratospheric water vapour deduced from the re-evaluated Boulder balloon series and HALOE , 2007 .

[6]  H. Bovensmann,et al.  Comparison of the inversion algorithms applied to the ozone vertical profile retrieval from SCIAMACHY limb measurements , 2007 .

[7]  L. Froidevaux,et al.  Comparison and synergy of stratospheric ozone measurements by satellite limb sounders and the ground-based microwave radiometer SOMORA , 2007 .

[8]  D. Hauglustaine,et al.  MIPAS reference atmospheres and comparisons to V4.61/V4.62 MIPAS level 2 geophysical data sets , 2007 .

[9]  Jean-Noël Thépaut,et al.  Analysis and forecast impact of the main humidity observing systems , 2007 .

[10]  C. Piccolo,et al.  Precision validation of MIPAS-Envisat products , 2007 .

[11]  J. Lelieveld,et al.  Stratospheric dryness: model simulations and satellite observations , 2007 .

[12]  S. Freitas,et al.  An overview of the HIBISCUS campaign , 2007 .

[13]  Martyn P. Chipperfield,et al.  Mean age of air and transport in a CTM: Comparison of different ECMWF analyses , 2007 .

[14]  Richard H. Johnson,et al.  Ten Years of Measurements of Tropical Upper-Tropospheric Water Vapor by MOZAIC. Part I: Climatology, Variability, Transport, and Relation to Deep Convection , 2007 .

[15]  D. Fussen,et al.  Nighttime ozone profiles in the stratosphere and mesosphere by the Global Ozone Monitoring by Occultation of Stars on Envisat , 2006 .

[16]  Manuel López-Puertas,et al.  MIPAS level 2 operational analysis , 2006 .

[17]  M. Kiefer,et al.  Characterization of MIPAS elevation pointing , 2006 .

[18]  Roderic L. Jones,et al.  Isentropic advection and convective lifting of water vapor in the UT - LS as observed over Brazil (22° S) in February 2004 by in situ high-resolution measurements of H 2 O, CH 4 , O 3 and temperature , 2006 .

[19]  F. Borchi,et al.  Evaluation of ozonesondes, HALOE, SAGE II and III, Odin- OSIRIS and -SMR, and ENVISAT-GOMOS, -SCIAMACHY and -MIPAS ozone profiles in the tropics from SAOZ long duration balloon measurements in 2003 and 2004 , 2006 .

[20]  S. Dhomse,et al.  The relationship between tropospheric wave forcing and tropical lower stratospheric water vapor , 2006 .

[21]  Gerhard Held,et al.  Solid particles in the tropical lowest stratosphere , 2006 .

[22]  S. Freitas,et al.  Mesoscale modelling of water vapour in the tropical UTLS: two case studies from the HIBISCUS campaign , 2006 .

[23]  Holger Vömel,et al.  Decreases in stratospheric water vapor after 2001: Links to changes in the tropical tropopause and the Brewer‐Dobson circulation , 2006 .

[24]  Christopher D. Barnet,et al.  Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts , 2006 .

[25]  L. Larrabee Strow,et al.  Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation , 2006 .

[26]  R. Freshwater,et al.  Lightweight dew-/frost-point hygrometer based on a surface-acoustic-wave sensor for balloon-borne atmospheric water vapor profile sounding , 2006 .

[27]  F. Borchi,et al.  EVALUATION OF OZONESONDES , HALOE , SAGE II , SAGE III , ODIN-OSIRIS AND-SMR , AND ENVISAT-GOMOS ,-SCIAMACHY AND-MIPAS OZONE PROFILES IN THE TROPICS FROM SAOZ LONG DURATION BALLOON MEASUREMENTS , 2006 .

[28]  S. Fueglistaler,et al.  Control of interannual and longer‐term variability of stratospheric water vapor , 2005 .

[29]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[30]  S. Solberg,et al.  Atmospheric Chemistry and Physics , 2002 .

[31]  Franck Lefèvre,et al.  Pressure-broadening coefficients and line strengths of H2O near 1.39μm : application to the in situ sensing of the middle atmosphere with balloonborne diode lasers , 2005 .

[32]  S. Fueglistaler,et al.  Stratospheric water vapor predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics , 2005 .

[33]  H. Bovensmann,et al.  The Ozone Hole Breakup in September 2002 as Seen by SCIAMACHY on ENVISAT , 2005 .

[34]  H. Bovensmann,et al.  NO2 and BrO vertical profile retrieval from SCIAMACHY limb measurements: Sensitivity studies , 2005 .

[35]  B Parvitte,et al.  In situ sensing of the middle atmosphere with balloonborne near-infrared laser diodes. , 2004, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[36]  Lance E. Christensen,et al.  Validating AIRS upper atmosphere water vapor retrievals using aircraft and balloon in situ measurements , 2004 .

[37]  Christopher R. Webster,et al.  Validation of Aqua satellite data in the upper troposphere and lower stratosphere with in situ aircraft instruments , 2004 .

[38]  Larry W. Thomason,et al.  Comparison of Stratospheric Aerosol and Gas Experiment (SAGE) II version 6.2 water vapor with balloon‐borne and space‐based instruments , 2004 .

[39]  Anne Garnier,et al.  Evaluation of SHADOZ sondes, HALOE and SAGE II ozone profiles at the tropics from SAOZ UV-Vis remote measurements onboard long duration balloons , 2004 .

[40]  Fei Wu,et al.  Interannual changes of stratospheric water vapor and correlations with tropical tropopause temperatures , 2004 .

[41]  K. Chance,et al.  Validation of MIPAS-ENVISAT Version 4.61 Operation Data with Balloon and Aircraft Measurement:H2O , 2004 .

[42]  L. Mona,et al.  VALIDATION OF MIPAS WATER VAPOR PRODUCTS BY GROUND BASED MEASUREMENTS , 2004 .

[43]  K. Bramstedt,et al.  OVERVIEW ON VALIDATION OF MIPAS H 2 O VAPOUR BY COMPARISON WITH INDEPENDENT SATELLITE MEASUREMENTS , 2004 .

[44]  L. Thomason,et al.  Assessment of the SAGE II version 6.2 water vapor data set through intercomparison with ATMOS/ATLAS‐3 measurements , 2004 .

[45]  J. Zawodny,et al.  A revised water vapor product for the Stratospheric Aerosol and Gas Experiment (SAGE) II version 6.2 data set , 2004 .

[46]  G. Barrot,et al.  GOMOS on Envisat: an overview , 2004 .

[47]  A. Kokhanovsky,et al.  SCIATRAN 2.0 – A new radiative transfer model for geophysical applications in the 175–2400 nm spectral region , 2004 .

[48]  F. Fierli MIPAS WATER VAPOUR MIXING RATIO AND TEMPERATURE VALIDATION BY RAMAN-MIE-RAYLEIGH LIDAR , 2004 .

[49]  G. Durrya,et al.  Pressure-broadening coefficients and line strengths of H 2 O near 1 . 39 m m : application to the in situ sensing of the middle atmosphere with balloonborne diode lasers , 2004 .

[50]  Claire L. Parkinson,et al.  Aqua: an Earth-Observing Satellite mission to examine water and other climate variables , 2003, IEEE Trans. Geosci. Remote. Sens..

[51]  Christopher D. Barnet,et al.  Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds , 2003, IEEE Trans. Geosci. Remote. Sens..

[52]  William L. Smith,et al.  AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems , 2003, IEEE Trans. Geosci. Remote. Sens..

[53]  Vincenzo Cuomo,et al.  Validation of MIPAS Temperature, Density and Water Vapour Profiles , 2003 .

[54]  Minghua Zhang,et al.  Simulations of the Interannual Variability of Stratospheric Water Vapor , 2002 .

[55]  M. Guirlet,et al.  First results on GOMOS/ENVISAT , 2002 .

[56]  Philip W. Rosenkranz,et al.  Retrieval of temperature and moisture profiles from AMSU-A and AMSU-B measurements , 2001, IEEE Trans. Geosci. Remote. Sens..

[57]  W. Grant,et al.  Aircraft observations of thin cirrus clouds near the tropical tropopause , 2001 .

[58]  Vladimir V. Rozanov,et al.  A numerical radiative transfer model for a spherical planetary atmosphere: combined differential-integral approach involving the Picard iterative approximation , 2001 .

[59]  Envisat : GOMOS : an instrument for global atmospheric ozone monitoring , 2001 .

[60]  S. Oltmans,et al.  The increase in stratospheric water vapor from balloonborne, frostpoint hygrometer measurements at Washington, D.C., and Boulder, Colorado , 2000 .

[61]  G. Mégie,et al.  In situ measurements of H 2 O from a stratospheric balloon by diode laser direct-differential absorption spectroscopy at 1.39 µm , 2000 .

[62]  S. Sherwood,et al.  On the control of stratospheric humidity , 2000 .

[63]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[64]  M. Buchwitz,et al.  A correlated‐k distribution scheme for overlapping gases suitable for retrieval of atmospheric constituents from moderate resolution radiance measurements in the visible/near‐infrared spectral region , 2000 .

[65]  G. Mégie,et al.  In situ measurements of H2O from a stratospheric balloon by diode laser direct-differential absorption spectroscopy at 1.39 microm. , 2000, Applied optics.

[66]  G. Mégie,et al.  Atmospheric CH4 and H2O monitoring with near-infrared InGaAs laser diodes by the SDLA, a balloonborne spectrometer for tropospheric and stratospheric in situ measurements. , 1999, Applied optics.

[67]  Piers M. Forster,et al.  Stratospheric water vapour changes as a possible contributor to observed stratospheric cooling , 1999 .

[68]  M. Hervig,et al.  Cirrus detection using HALOE measurements , 1999 .

[69]  M. Buchwitz,et al.  SCIAMACHY: Mission Objectives and Measurement Modes , 1999 .

[70]  Franck Lefèvre,et al.  The 1997 Arctic Ozone depletion quantified from three‐dimensional model simulations , 1998 .

[71]  J. Russell,et al.  Trends in stratospheric humidity and the sensitivity of ozone to these trends , 1998 .

[72]  James M. Russell,et al.  Increases in middle atmospheric water vapor as observed by the Halogen Occultation Experiment and the ground-based Water Vapor Millimeter-Wave Spectrometer from 1991 to 1997 , 1998 .

[73]  P. V. Velthoven,et al.  Comparison of Water Vapor Measurements with Data Retrieved from ECMWF Analyses during the POLINAT Experiment , 1997 .

[74]  H. Pickett,et al.  Balloon‐borne measurements of stratospheric radicals and their precursors: Implications for the production and loss of ozone , 1997 .

[75]  K. Trenberth,et al.  Earth's annual global mean energy budget , 1997 .

[76]  J. Spinhirne,et al.  On the formation and persistence of subvisible cirrus clouds near the tropical tropopause , 1996 .

[77]  Wesley A. Traub,et al.  Validation of measurements of water vapor from the Halogen Occultation Experiment (HALOE) , 1996 .

[78]  David R. Hanson,et al.  Reaction of BrONO2 with H2O on submicron sulfuric acid aerosol and the implications for the lower stratosphere , 1996 .

[79]  S. Oltmans,et al.  Increase in lower-stratospheric water vapour at a mid-latitude Northern Hemisphere site from 1981 to 1994 , 1995, Nature.

[80]  S. Wofsy,et al.  Removal of Stratospheric O3 by Radicals: In Situ Measurements of OH, HO2, NO, NO2, ClO, and BrO , 1994, Science.

[81]  Stefan Kinne,et al.  Tropical cirrus cloud radiative forcing: Sensitivity studies , 1994 .

[82]  Jacques Piquard,et al.  Ozone and nitrogen dioxide vertical distributions by UV‐visible solar occultation from balloons , 1994 .

[83]  Wolfgang Wagner,et al.  International Equations for the Pressure Along the Melting and Along the Sublimation Curve of Ordinary Water Substance , 1994 .

[84]  G. Brasseur,et al.  Chemistry of the 1991–1992 stratospheric winter: Three‐dimensional model simulations , 1994 .

[85]  James M. Russell,et al.  The Halogen Occultation Experiment , 1993 .

[86]  K. Kelly,et al.  Water vapor and cloud water measurements over Darwin during the STEP 1987 tropical mission , 1993 .

[87]  Wolfgang Wagner,et al.  International equations for the saturation properties of ordinary water substance. Revised according to the international temperature scale of 1990 , 1993 .

[88]  John P. Burrows,et al.  SCIAMACHY—scanning imaging absorption spectrometer for atmospheric chartography , 1992 .

[89]  F. X. Kneizys,et al.  Users Guide to LOWTRAN 7 , 1988 .

[90]  Wolfgang Wagner,et al.  International Equations for the Saturation Properties of Ordinary Water Substance , 1987 .

[91]  L. E. Mauldin,et al.  Stratospheric Aerosol And Gas Experiment II Instrument: A Functional Description , 1985 .