Unveiling a universal relationship between the f(R) parameter and neutron star properties

In recent years, modified gravity theories have gained significant attention as potential replacements for the general theory of relativity. Neutron stars, which are dense compact objects, provide ideal astrophysical laboratories for testing these theories. However, understanding the properties of neutron stars within the framework of modified gravity theories requires careful consideration of the presently known uncertainty of equations of state (EoS) that describe the behavior of matter at extreme densities. In this study, we investigate three realistic EoS generated using a relativistic mean field framework, which covers the currently known uncertainties in the stiffness of neutron star matter. We then employ a Bayesian approach to statistically analyze the posterior distribution of the free parameter $\alpha$ of the $f(R)$ gravity model, specifically $f(R) = R + \alpha R^2$. By using this approach, we are able to account for our limited understanding of the interiors of neutron stars as well as the uncertainties associated with the modified gravity theory. We impose observational constraints on our analysis, including the maximum mass, and the radius of a neutron star with a mass of $1.4 M_{\odot}$ and $2.08 M_{\odot}$, which are obtained from X-ray NICER observations. By considering these constraints, we are able to robustly investigate the relationship between the $f(R)$ gravity model parameter $\alpha$ and the maximum mass of neutron stars. Our results reveal a universality relationship between the $f(R)$ gravity model parameter $\alpha$ and the maximum mass of neutron stars. This relationship provides insights into the behavior of neutron stars in modified gravity theories and helps us understand the degeneracies arising from our current limited knowledge of the interiors of neutron stars and the free parameter $\alpha$ of the modified gravity theory.

[1]  G. Raaijmakers,et al.  Constraining fundamental nuclear physics parameters using neutron star mass-radius measurements I: Nucleonic models , 2023, 2303.17518.

[2]  S. Nojiri,et al.  Revisiting compact star in $F(R)$ gravity: Roles of chameleon potential and energy conditions , 2023, 2302.03951.

[3]  C. Providencia,et al.  Spanning the full range of neutron star properties within a microscopic description , 2023, Physical Review D.

[4]  Bradley Dirks,et al.  The minimal exponent and k-rationality for local complete intersections , 2022, Journal de l’École polytechnique — Mathématiques.

[5]  L. Rezzolla,et al.  Bayesian Analysis of Neutron-star Properties with Parameterized Equations of State: The Role of the Likelihood Functions , 2022, The Astrophysical Journal.

[6]  C. Providencia,et al.  Inferring the nuclear symmetry energy at suprasaturation density from neutrino cooling , 2022, Physical Review C.

[7]  C. Providencia,et al.  Bayesian inference of signatures of hyperons inside neutron stars , 2022, Physical Review D.

[8]  J. Margueron,et al.  Perturbative QCD and the neutron star equation of state , 2022, Physical Review C.

[9]  A. Kurkela,et al.  Ab-initio QCD Calculations Impact the Inference of the Neutron-star-matter Equation of State , 2022, The Astrophysical Journal.

[10]  L. Rezzolla,et al.  On the Sound Speed in Neutron Stars , 2022, The Astrophysical Journal Letters.

[11]  A. Mukherjee,et al.  Nearly model-independent constraints on dense matter equation of state in a Bayesian approach , 2022, Physical Review D.

[12]  S. Banik,et al.  Comparison of perturbative and non-perturbative methods in f(R) gravity , 2022, The European Physical Journal C.

[13]  S. Nojiri,et al.  Compact star in general F(R) gravity: Inevitable degeneracy problem and non-integer power correction , 2021, Physics Letters B.

[14]  C. Mondal,et al.  Bayesian reconstruction of nuclear matter parameters from the equation of state of neutron star matter , 2021, Physical Review C.

[15]  I. Cognard,et al.  The Radius of PSR J0740+6620 from NICER and XMM-Newton Data , 2021, The Astrophysical Journal Letters.

[16]  S. Banik,et al.  Tidal deformability of neutron stars with exotic particles within a density dependent relativistic mean field model in R-squared gravity , 2021, 2105.07813.

[17]  T. E. Riley,et al.  A NICER View of the Massive Pulsar PSR J0740+6620 Informed by Radio Timing and XMM-Newton Spectroscopy , 2021, The Astrophysical Journal Letters.

[18]  K. Chatziioannou,et al.  Nonparametric constraints on neutron star matter with existing and upcoming gravitational wave and pulsar observations , 2020, Physical Review D.

[19]  G. Pagliara,et al.  Bayesian Inference of Dense Matter Equation of State within Relativistic Mean Field Models Using Astrophysical Measurements , 2020, The Astrophysical Journal.

[20]  Keith C. Gendreau,et al.  A NICER View of PSR J0030+0451: Millisecond Pulsar Parameter Estimation , 2019, The Astrophysical Journal.

[21]  W. Ho,et al.  PSR J0030+0451 Mass and Radius from NICER Data and Implications for the Properties of Neutron Star Matter , 2019, The Astrophysical Journal.

[22]  T. E. Riley,et al.  A NICER View of PSR J0030+0451: Implications for the Dense Matter Equation of State , 2019, The Astrophysical Journal.

[23]  E. Thrane,et al.  Constraining Short Gamma-Ray Burst Jet Properties with Gravitational Waves and Gamma-Rays , 2019, The Astrophysical Journal.

[24]  G. Ashton,et al.  Multiwaveform inference of gravitational waves , 2019, Physical Review D.

[25]  P. Lasky,et al.  Measuring the neutron star equation of state with gravitational waves: The first forty binary neutron star merger observations , 2019, Physical Review D.

[26]  S. Biscoveanu,et al.  The Reliability of the Low-latency Estimation of Binary Neutron Star Chirp Mass , 2019, The Astrophysical Journal.

[27]  E. Thrane,et al.  Higher order gravitational-wave modes with likelihood reweighting , 2019, Physical Review D.

[28]  C. Raithel Constraints on the neutron star equation of state from GW170817 , 2019, The European Physical Journal A.

[29]  D. Keitel Multiple-image Lensing Bayes Factor for a Set of Gravitational-wave Events , 2019, Research Notes of the AAS.

[30]  M. Coughlin,et al.  Can a black hole–neutron star merger explain GW170817, AT2017gfo, and GRB170817A? , 2019, Physical Review D.

[31]  B. A. Boom,et al.  Properties of the Binary Neutron Star Merger GW170817 , 2019 .

[32]  A. Astashenok,et al.  Neutron stars in frames of R2-gravity and gravitational waves , 2018, International Journal of Geometric Methods in Modern Physics.

[33]  P. Lasky,et al.  Bilby: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy , 2018, The Astrophysical Journal Supplement Series.

[34]  D Huet,et al.  GW170817: Measurements of Neutron Star Radii and Equation of State. , 2018, Physical review letters.

[35]  K. Kokkotas,et al.  Tidal Love numbers of neutron stars in f(R) gravity , 2018, The European Physical Journal C.

[36]  C. Geng,et al.  Equation of State of Neutron Stars with Junction Conditions in the Starobinsky Model , 2017, 1702.05936.

[37]  F. Llanes-Estrada Constraining gravity with hadron physics: neutron stars, modified gravity and gravitational waves , 2016, 1611.03851.

[38]  À. Ramos,et al.  EQUATION OF STATE FOR NUCLEONIC AND HYPERONIC NEUTRON STARS WITH MASS AND RADIUS CONSTRAINTS , 2016, 1610.00919.

[39]  M. Bejger,et al.  Neutron star radii and crusts: Uncertainties and unified equations of state , 2016, 1604.01944.

[40]  F. Llanes-Estrada,et al.  On neutron stars in $f(R)$ theories: Small radii, large masses and large energy emitted in a merger , 2016, 1602.03880.

[41]  S. Capozziello,et al.  Mass-radius relation for neutron stars in f(R) gravity , 2015, 1509.04163.

[42]  Wei-Chia Chen,et al.  Building relativistic mean field models for finite nuclei and neutron stars , 2014, 1408.4159.

[43]  A. Astashenok Neutron star models in frames of f (R) gravity , 2014 .

[44]  P. Char,et al.  Massive Neutron Stars with Antikaon Condensates in a Density Dependent Hadron Field Theory , 2014, 1406.4961.

[45]  K. Kokkotas,et al.  Non-perturbative and self-consistent models of neutron stars in R-squared gravity , 2014, 1402.4469.

[46]  A. Merloni,et al.  X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue , 2014, 1402.0004.

[47]  G. E. Romero,et al.  Structure of neutron stars in $$R$$-squared gravity , 2013, 1301.5189.

[48]  T. Fischer,et al.  CORE-COLLAPSE SUPERNOVA EQUATIONS OF STATE BASED ON NEUTRON STAR OBSERVATIONS , 2012, 1207.2184.

[49]  Antonio Padilla,et al.  Modified Gravity and Cosmology , 2011, 1106.2476.

[50]  K. Ekşi,et al.  Constraints on perturbative f(R) gravity via neutron stars , 2010, 1003.3179.

[51]  J. Schaffner-Bielich,et al.  A statistical model for a complete supernova equation of state , 2009, 0911.4073.

[52]  D. Langlois,et al.  Relativistic stars in f(R) and scalar-tensor theories , 2009, 0911.1297.

[53]  D. Psaltis,et al.  Neutron Stars in f(R) Gravity with Perturbative Constraints , 2009, 0910.5480.

[54]  S. Typel,et al.  Composition and thermodynamics of nuclear matter with light clusters , 2009, 0908.2344.

[55]  R. Furnstahl,et al.  Bayesian parameter estimation in effective field theories , 2008, 1511.03618.

[56]  T. Sotiriou,et al.  f(R) Theories Of Gravity , 2008, 0805.1726.

[57]  E. Copeland,et al.  Dynamics of dark energy , 2006, hep-th/0603057.

[58]  T. Padmanabhan Cosmological constant—the weight of the vacuum , 2002, hep-th/0212290.

[59]  P. Danielewicz,et al.  Determination of the Equation of State of Dense Matter , 2002, Science.

[60]  S. Banik,et al.  Density dependent hadron field theory for neutron stars with antikaon condensates , 2002, astro-ph/0205532.

[61]  H. Heiselberg,et al.  RECENT PROGRESS IN NEUTRON STAR THEORY , 2000, astro-ph/0003276.

[62]  H. Heiselberg,et al.  Phase Transitions in Neutron Stars , 1998, astro-ph/9802028.

[63]  J. Walecka,et al.  Recent progress in quantum hadrodynamics , 1997, nucl-th/9701058.

[64]  Yuichi Sugahara,et al.  Relativistic mean-field theory for unstable nuclei with non-linear σ and ω terms , 1994 .

[65]  J. Walecka,et al.  The Relativistic Nuclear Many Body Problem , 1984 .

[66]  M. Kendall A NEW MEASURE OF RANK CORRELATION , 1938 .

[67]  David B. Dunson,et al.  Bayesian data analysis, third edition , 2013 .

[68]  C. Skordis,et al.  Modied Gravity and Cosmology , 2013 .

[69]  N. D. Birrell,et al.  Quantum fields in curved space , 2007 .

[70]  Imre Bartos Neutron stars , 2000 .