The Effects of Bundle Geometry on Heat Exchanger Tube Vibration in Two-Phase Cross Flow

Many shell-and-tube heat exchangers operate in two-phase flows. This paper presents the results of a series of experiments done on tube bundles of different geometries subjected to two-phase cross flow simulated by air-water mixtures. Normal (30 deg) and rotated (60 deg) triangular, and normal (90 deg) and rotated (45 deg) square tube bundle configurations of pitch-to-diameter ratio of 1.2 to 1.5 were tested over a range of mass fluxes from 0 to 1000 kg/(m 2 s) and void fraction from 0 to 100 percent. The effects of tube bundle geometry on vibration excitation mechanisms such as fluidelastic instability and random turbulence, and on dynamic parameters such as damping and hydrodynamic mass are discussed.