Pseudo-complementary PNA actuators as reversible switches in dynamic DNA nanotechnology

The structural reorganization of nanoscale DNA architectures is a fundamental aspect in dynamic DNA nanotechnology. Commonly, DNA nanoarchitectures are reorganized by means of toehold-expanded DNA sequences in a strand exchange process. Here we describe an unprecedented, toehold-free switching process that relies on pseudo-complementary peptide nucleic acid (pcPNA) by using a mechanism that involves double-strand invasion. The usefulness of this approach is demonstrated by application of these peptide nucleic acids (PNAs) as switches in a DNA rotaxane architecture. The monomers required for generating the pcPNA were obtained by an improved synthesis strategy and were incorporated into a PNA actuator sequence as well as into a short DNA strand that subsequently was integrated into the rotaxane architecture. Alternate addition of a DNA and PNA actuator sequence allowed the multiple reversible switching between a mobile rotaxane macrocycle and a stationary pseudorotaxane state. The switching occurs in an isothermal process at room temperature and is nearly quantitative in each switching step. pcPNAs can potentially be combined with light- and toehold-based switches, thus broadening the toolbox of orthogonal switching approaches for DNA architectures that open up new avenues in dynamic DNA nanotechnology.

[1]  Peter E. Nielsen,et al.  Peptide nucleic acid (PNA) , 1999 .

[2]  David R Corey,et al.  Extending recognition by peptide nucleic acids (PNAs): binding to duplex DNA and inhibition of transcription by tail-clamp PNA-peptide conjugates. , 2003, Biochemistry.

[3]  Ruojie Sha,et al.  A Bipedal DNA Brownian Motor with Coordinated Legs , 2009, Science.

[4]  R. H. Berg,et al.  Solid‐Phase synthesis of peptide nucleic acids , 1995, Journal of peptide science : an official publication of the European Peptide Society.

[5]  A. Turberfield,et al.  A DNA-fuelled molecular machine made of DNA , 2022 .

[6]  Philip S Lukeman,et al.  Two dimensional PNA/DNA arrays: estimating the helicity of unusual nucleic acid polymers. , 2004, Chemical communications.

[7]  Chengde Mao,et al.  Reversibly switching the surface porosity of a DNA tetrahedron. , 2012, Journal of the American Chemical Society.

[8]  L. D. Taylor,et al.  Use of o- and p-hydroxybenzyl functions as blocking groups which are removable with base , 1978 .

[9]  E. Lukhtanov,et al.  Oligonucleotides containing 2-aminoadenine and 2-thiothymine act as selectively binding complementary agents. , 1996, Biochemistry.

[10]  M. Frank-Kamenetskii,et al.  Two sides of the coin: affinity and specificity of nucleic acid interactions. , 2004, Trends in biochemical sciences.

[11]  Michael Famulok,et al.  A double-stranded DNA rotaxane. , 2010, Nature nanotechnology.

[12]  K. Nambiar,et al.  Synthesis of oligodeoxynucleotides containing 2-thiopyrimidine residues--a new protection scheme. , 1994, Nucleic acids research.

[13]  A. Turberfield,et al.  DNA nanomachines. , 2007, Nature nanotechnology.

[14]  Richard A. Muscat,et al.  A programmable molecular robot. , 2011, Nano letters.

[15]  Christopher J. Nulf,et al.  DNA assembly using bis-peptide nucleic acids (bisPNAs) , 2002, Nucleic Acids Res..

[16]  P. Nielsen,et al.  Double duplex invasion by peptide nucleic acid: a general principle for sequence-specific targeting of double-stranded DNA. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[18]  W. Tan,et al.  Molecular engineering of photoresponsive three-dimensional DNA nanostructures. , 2011, Chemical communications.

[19]  M. Saneyoshi,et al.  Synthesis and Antiherpesvirus Activities of 5-Alkyl-2-Thiopyrimidine Nucleoside Analogues , 2002, Antiviral chemistry & chemotherapy.

[20]  Peter E. Nielsen,et al.  Peptide nucleic acid (PNA). A DNA mimic with a pseudopeptide backbone , 2010 .

[21]  D. Y. Zhang,et al.  Control of DNA strand displacement kinetics using toehold exchange. , 2009, Journal of the American Chemical Society.

[22]  W. Wierenga,et al.  Stereochemical control as a function of protecting-group participation in 2-deoxy-D-erythro-pentofuranosyl nucleosides☆ , 1981 .

[23]  B. Connolly,et al.  Synthesis and properties of oligonucleotides containing 4-thiothymidine, 5-methyl-2-pyrimidinone-1-beta-D(2'-deoxyriboside) and 2-thiothymidine. , 1989, Nucleic acids research.

[24]  D. Davis,et al.  Synthesis of Oligoribonucleotides Containing 2-Thiouridine: Incorporation of 2-Thiouridine Phosphoramidite without Base Protection , 1995 .

[25]  Xingguo Liang,et al.  A DNA Nanomachine Powered by Light Irradiation , 2008, Chembiochem : a European journal of chemical biology.

[26]  Michael Famulok,et al.  Reversible Light Switch for Macrocycle Mobility in a DNA Rotaxane , 2012, Journal of the American Chemical Society.

[27]  J. Kjems,et al.  A DNA tile actuator with eleven discrete states. , 2011, Angewandte Chemie.

[28]  M. Frank-Kamenetskii,et al.  Specific versus nonspecific binding of cationic PNAs to duplex DNA. , 2004, Biophysical journal.

[29]  K. Nambiar,et al.  A Stereoselective Synthesis of α - and β-2′-Deoxy-2-thiouridine , 1993 .

[30]  Nicole A. Leal,et al.  Artificial genetic systems: self-avoiding DNA in PCR and multiplexed PCR. , 2010, Angewandte Chemie.

[31]  Stephen B. H. Kent,et al.  In situ neutralization in Boc-chemistry solid phase peptide synthesis. Rapid, high yield assembly of difficult sequences. , 2009 .

[32]  Russell P. Goodman,et al.  Reconfigurable, braced, three-dimensional DNA nanostructures. , 2008, Nature nanotechnology.

[33]  L E Babiss,et al.  Strand-invasion of duplex DNA by peptide nucleic acid oligomers. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[34]  A. Turberfield,et al.  Direct observation of stepwise movement of a synthetic molecular transporter. , 2011, Nature nanotechnology.

[35]  E. Sochacka EFFICIENT ASSESSMENT OF MODIFIED NUCLEOSIDE STABILITY UNDER CONDITIONS OF AUTOMATED OLIGONUCLEOTIDE SYNTHESIS: CHARACTERIZATION OF THE OXIDATION AND OXIDATIVE DESULFURIZATION OF 2-THIOURIDINE , 2001, Nucleosides, nucleotides & nucleic acids.

[36]  Jonathan Bath,et al.  A DNA-based molecular motor that can navigate a network of tracks. , 2012, Nature nanotechnology.

[37]  B. Nordén,et al.  Direct observation of strand invasion by peptide nucleic acid (PNA) into double-stranded DNA , 1996 .

[38]  B. Connolly,et al.  Synthesis and properties of oligonucleotides containing 4-thiothyniidine, 5-methyl-2-pyrunidinone-1-β-D(2'-dexoyriboside) and 2-thiothvmidine , 1989 .

[39]  Xingguo Liang,et al.  A light-driven DNA nanomachine for the efficient photoswitching of RNA digestion. , 2010, Angewandte Chemie.

[40]  Kosuke Niwa,et al.  Coherent quenching of a fluorophore for the design of a highly sensitive in-stem molecular beacon. , 2010, Angewandte Chemie.

[41]  P. Strehlke,et al.  Nucleosidsynthesen, VII. Eine einfache Synthese von 2-Thiopyrimidin-nucleosiden , 1973 .

[42]  V. Demidov,et al.  Sequence-universal recognition of duplex DNA by oligonucleotides via pseudocomplementarity and helix invasion. , 2003, Chemistry & biology.

[43]  Friedrich C. Simmel,et al.  Nucleic Acid Based Molecular Devices , 2011 .

[44]  G. Seelig,et al.  Dynamic DNA nanotechnology using strand-displacement reactions. , 2011, Nature chemistry.

[45]  O. Gang,et al.  Site-selective binding of nanoparticles to double-stranded DNA via peptide nucleic acid "invasion". , 2011, ACS nano.

[46]  H. Vorbrüggen,et al.  Synthesis Of Nucleosides , 2004 .

[47]  Xi Chen,et al.  Expanding the rule set of DNA circuitry with associative toehold activation. , 2012, Journal of the American Chemical Society.

[48]  Michael Griffith,et al.  SINGLE AND BIS PEPTIDE NUCLEIC ACIDS AS TRIPLEXING AGENTS : BINDING AND STOICHIOMETRY , 1995 .

[49]  H. Asanuma,et al.  A photon-fueled DNA nanodevice that contains two different photoswitches. , 2012, Angewandte Chemie.

[50]  N. Seeman,et al.  A robust DNA mechanical device controlled by hybridization topology , 2002, Nature.

[51]  Michael Famulok,et al.  Design strategy for DNA rotaxanes with a mechanically reinforced PX100 axle. , 2012, Angewandte Chemie.

[52]  V V Demidov,et al.  Kinetic sequence discrimination of cationic bis-PNAs upon targeting of double-stranded DNA. , 1998, Nucleic acids research.

[53]  V V Demidov,et al.  Kinetics and mechanism of polyamide ("peptide") nucleic acid binding to duplex DNA. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[54]  G. P. Moss,et al.  Nomenclature for rotaxanes and pseudorotaxanes (IUPAC Recommendations 2008) , 2008 .

[55]  Jonathan Bath,et al.  Remote toehold: a mechanism for flexible control of DNA hybridization kinetics. , 2011, Journal of the American Chemical Society.

[56]  Hao Yan,et al.  Challenges and opportunities for structural DNA nanotechnology. , 2011, Nature nanotechnology.

[57]  Michael Famulok,et al.  DNA minicircles with gaps for versatile functionalization. , 2008, Angewandte Chemie.

[58]  David R. Liu,et al.  Autonomous Multistep Organic Synthesis in a Single Isothermal Solution Mediated by a DNA Walker , 2010, Nature nanotechnology.

[59]  Makoto Komiyama,et al.  Solid-phase synthesis of pseudo-complementary peptide nucleic acids , 2008, Nature Protocols.

[60]  Peter E. Nielsen,et al.  Kinetics and mechanism of the DNA double helix invasion by pseudocomplementary peptide nucleic acids , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Itamar Willner,et al.  Programmed dynamic topologies in DNA catenanes. , 2012, Angewandte Chemie.

[62]  P. Nielsen,et al.  Increased DNA binding and sequence discrimination of PNA oligomers containing 2,6-diaminopurine. , 1997, Nucleic acids research.

[63]  G. Giacomelli,et al.  Peptide nucleic acids (PNAs), a chemical overview. , 2005, Current medicinal chemistry.

[64]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[65]  Hao Yan,et al.  Folding and cutting DNA into reconfigurable topological nanostructures. , 2010, Nature nanotechnology.

[66]  Peter E. Nielsen,et al.  DNA-like double helix formed by peptide nucleic acid , 1994, Nature.