ELECTROMAGNETICALLY INDUCED NEGATIVE REFRACTIVE INDEX IN DOPED SEMICONDUCTORS AT OPTICAL FREQUENCIES

Based on methods of quantum optics, we discuss the possibility of achieving the negative index of refraction in a semiconductor with donor-like impurities. The quantum states of hydrogen-like donor atom and states of an electron in conduction band constitute a discrete-level atomic medium within the optical range. The coherent coupling of an electric dipole transition with a magnetic dipole transition leads to permeability and permittivity responses and, within some frequency band, ensures the negative refractive index. The magnetic moment between two quasi-atomic states separated by optical frequencies is induced by a low-frequency electromagnetic field. The implementation of this scheme is carried out in tin-doped indium oxide, and the calculations show feasibility of the effect within a broad bandwidth ∼2% with a high figure of merit greater than 10 in the optical regime.

[1]  Willie J Padilla,et al.  Terahertz Magnetic Response from Artificial Materials , 2004, Science.

[2]  Alexander Baev,et al.  A quantum chemical approach to the design of chiral negative index materials. , 2007, Optics express.

[3]  Ronald L Walsworth,et al.  Tunable negative refraction without absorption via electromagnetically induced chirality. , 2007, Physical review letters.

[4]  U. Chettiar,et al.  Negative refractive index in optics of metal-dielectric composites , 2005, physics/0510001.

[5]  Marcella Giovannini,et al.  External cavity quantum-cascade laser tunable from 8.2to10.4μm using a gain element with a heterogeneous cascade , 2006 .

[6]  A. Semichaevsky,et al.  MgB2-based negative refraction index metamaterial at visible frequencies : Theoretical analysis , 2007 .

[7]  Ozgur Esat Mustecapliouglu,et al.  Electromagnetically induced left-handedness in a dense gas of three-level atoms , 2004, Physical Review A.

[8]  John B. Pendry Electromagnetic materials enter the negative age , 2001 .

[9]  Q. Thommen,et al.  Electromagnetically induced left handedness in optically excited four-level atomic media. , 2006, Physical review letters.

[10]  Ismo V. Lindell,et al.  Electromagnetic Waves in Chiral and Bi-Isotropic Media , 1994 .

[11]  V. Podolskiy,et al.  Near-sighted superlens. , 2004, Optics letters.

[12]  I. Elfallal,et al.  Formulation of a statistical thermodynamic model for the electron concentration in heavily doped metal oxide semiconductors applied to the tin-doped indium oxide system , 1993 .

[13]  N. Engheta,et al.  A positive future for double-negative metamaterials , 2005, IEEE Transactions on Microwave Theory and Techniques.

[14]  C. Kittel Introduction to solid state physics , 1954 .

[15]  A. Schuster An Introduction to the Theory of Optics , 2007, Nature.

[16]  J. Cohen,et al.  Neutron diffraction study on the defect structure of indium--tin--oxide , 2001 .

[17]  C. Kittel Interaction of Spin Waves and Ultrasonic Waves in Ferromagnetic Crystals , 1958 .

[18]  P. Mandel Electromagnetically Induced Transparency: Answering a Question of Romain , 2001 .

[19]  Horst Hoffmann,et al.  Optical Properties of RF-Sputtered Indium Oxide Films , 1982 .

[20]  Roger M. Wood,et al.  Laser-induced damage of optical materials , 2003 .

[21]  M. Wegener,et al.  Negative-index metamaterial at 780 nm wavelength. , 2006, Optics letters.

[22]  Kevin J. Malloy,et al.  Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies , 2006 .

[23]  Niwat Angkawisittpan,et al.  Optically isotropic negative index of refraction metamaterial , 2008 .

[24]  W. S. Weiglhofer,et al.  The negative index of refraction demystified , 2002 .

[25]  D. Smith,et al.  Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients , 2001, physics/0111203.

[26]  Vassilios Yannopapas,et al.  Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges , 2005, Journal of physics. Condensed matter : an Institute of Physics journal.

[27]  Harris,et al.  Nonlinear optical processes using electromagnetically induced transparency. , 1990, Physical review letters.

[28]  J. Shen Negatively refracting atomic vapour , 2006 .

[29]  Negative refraction index in the magnetic semiconductor In 2-x Cr x O 3 : Theoretical analysis , 2008 .

[30]  A. Geim,et al.  Nanofabricated media with negative permeability at visible frequencies , 2005, Nature.

[31]  N I Zheludev,et al.  Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. , 2006, Physical review letters.

[32]  E. Schlömann Ferromagnetic Relaxation Caused by Interaction with Thermally Excited Magnons , 1961 .

[33]  G. Agarwal,et al.  Electromagnetically induced magnetochiral anisotropy in resonant medium , 2005, 2005 Quantum Electronics and Laser Science Conference.

[34]  H. Fjellvåg,et al.  Phase stability, electronic structure, and optical properties of indium oxide polytypes , 2007 .

[35]  ISOTROPIC NEGATIVELY-REFRACTING ATOMIC-VAPOR MEDIUM , 2007 .

[36]  A. Lakhtakia,et al.  A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity , 2003 .

[37]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[38]  M. Wegener,et al.  Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial , 2006, Science.

[39]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[40]  Isotropic three-dimensional left-handed metamaterials , 2005, cond-mat/0504348.

[41]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .

[42]  N. Bloembergen,et al.  Relaxation Effects in Para- and Ferromagnetic Resonance , 1954 .

[43]  E. M. Lifshitz,et al.  Quantum mechanics: Non-relativistic theory, , 1959 .

[44]  J. Stewart Aitchison,et al.  Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies , 2006 .

[45]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[46]  A. Loidl,et al.  Negative refraction observed in a metallic ferromagnet in the gigahertz frequency range. , 2007, Physical review letters.