Stability Predictions for End Milling Operations With a Nonlinear Cutting Force Model

The aim of this paper is to obtain the stability lobes for milling operations with a nonlinear cutting force model. The work is focused on the generation of stability lobes based on a formulation with Chebyshev polynomials and the semidiscretization method, considering a nonlinear cutting force model. Comparisons were conducted between experimental data at 5% radial immersion with aluminum workpiece and predictions based on Chebyshev and semidiscretization. In all cases, the use of nonlinear cutting force model provides better prediction of process stability conditions.

[1]  William J. Endres,et al.  Added Stability Lobes in Machining Processes That Exhibit Periodic Time Variation, Part 2: Experimental Validation , 2004 .

[2]  S. Sinha,et al.  An efficient computational scheme for the analysis of periodic systems , 1991 .

[3]  O. Daněk,et al.  Selbsterregte Schwingungen : An Werkzeugmaschinen , 1962 .

[4]  T. J. Rivlin The Chebyshev polynomials , 1974 .

[5]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[6]  S. A. Tobias Vibration of machine tools , 1964 .

[7]  Gábor Stépán,et al.  Updated semi‐discretization method for periodic delay‐differential equations with discrete delay , 2004 .

[8]  Brian P. Mann,et al.  Milling Bifurcations from Structural Asymmetry and Nonlinear Regeneration , 2005 .

[9]  Wolfgang Beitz,et al.  Handbook of mechanical engineering , 1994 .

[10]  S. A. Tobias Machine-tool vibration , 1965 .

[11]  Gábor Stépán,et al.  Semi‐discretization method for delayed systems , 2002 .

[12]  Eric A. Butcher,et al.  Stability of Up- and Down-Milling Using Chebyshev Collocation Method , 2005 .

[13]  Donato Trigiante,et al.  THEORY OF DIFFERENCE EQUATIONS Numerical Methods and Applications (Second Edition) , 2002 .

[14]  Tony L. Schmitz,et al.  Effects of Radial Immersion and Cutting Direction on Chatter Instability in End-Milling , 2002 .

[15]  Juan Carlos Jáuregui-Correa,et al.  Instability conditions due to structural nonlinearities in regenerative chatter , 2009 .

[16]  Gábor Stépán,et al.  Nonlinear Dynamics of High-Speed Milling—Analyses, Numerics, and Experiments , 2005 .

[17]  Yusuf Altintas,et al.  Multi frequency solution of chatter stability for low immersion milling , 2004 .

[18]  Subhash C. Sinha,et al.  A symbolic computational technique for stability and bifurcation analysis of nonlinear time-periodic systems , 1997 .

[19]  Keith A. Young,et al.  Simultaneous Stability and Surface Location Error Predictions in Milling , 2005 .

[20]  Gábor Stépán,et al.  Multiple chatter frequencies in milling processes , 2003 .

[21]  Yusuf Altintas,et al.  Analytical Prediction of Chatter Stability in Milling—Part I: General Formulation , 1998 .