Exposure to microgravity for 30 days onboard Bion M1 caused muscle atrophy and impaired regeneration in murine femoral Quadriceps.

[1]  K. Myburgh,et al.  Skeletal muscle wasting with disuse atrophy is multi-dimensional: the response and interaction of myonuclei, satellite cells and signaling pathways , 2014, Front. Physiol..

[2]  B. Shenkman,et al.  [Experimental studies with mice on the program of the biosatellite BION-M1 mission]. , 2014, Aviakosmicheskaia i ekologicheskaia meditsina = Aerospace and environmental medicine.

[3]  M. Sandri Protein breakdown in muscle wasting: Role of autophagy-lysosome and ubiquitin-proteasome☆☆☆ , 2013, The international journal of biochemistry & cell biology.

[4]  V. Reggie Edgerton,et al.  Alterations in muscle mass and contractile phenotype in response to unloading models: role of transcriptional/pretranslational mechanisms , 2013, Front. Physiol..

[5]  Signe Brinkløv,et al.  Echolocation in Oilbirds and swiftlets , 2013, Front. Physiol..

[6]  T. Nikawa,et al.  Unloading stress disturbs muscle regeneration through perturbed recruitment and function of macrophages. , 2012, Journal of applied physiology.

[7]  A. Musarò,et al.  Adaptation of Mouse Skeletal Muscle to Long-Term Microgravity in the MDS Mission , 2012, PloS one.

[8]  Christoph Lepper,et al.  An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration , 2011, Development.

[9]  T. Bateman,et al.  Microarray Profile of Gene Expression During Osteoclast Differentiation in Modelled Microgravity , 2010, Journal of cellular biochemistry.

[10]  B. Shenkman,et al.  Skeletal Muscle Activity and the Fate of Myonuclei , 2010, Acta naturae.

[11]  D. Metzger,et al.  Autophagy is required to maintain muscle mass. , 2009, Cell metabolism.

[12]  B. Jasmin,et al.  Molecular events and signalling pathways involved in skeletal muscle disuse-induced atrophy and the impact of countermeasures , 2009, Journal of cellular and molecular medicine.

[13]  Y. Ohira,et al.  Gravitational unloading inhibits the regenerative potential of atrophied soleus muscle in mice , 2009, Acta physiologica.

[14]  S. Gordon,et al.  Effects of 14 days of microgravity on fast hindlimb and diaphragm muscles of the rat , 2009, European Journal of Applied Physiology.

[15]  Louis S Stodieck,et al.  Effects of spaceflight on murine skeletal muscle gene expression. , 2009, Journal of applied physiology.

[16]  Y. Ohira,et al.  Gene expression levels of heat shock proteins in the soleus and plantaris muscles of rats after hindlimb suspension or spaceflight. , 2008, The journal of physiological sciences : JPS.

[17]  I. Nonaka,et al.  Essential role of satellite cells in the growth of rat soleus muscle fibers. , 2008, American journal of physiology. Cell physiology.

[18]  Yongqing Liu,et al.  Transcriptional Analysis of Normal Human Fibroblast Responses to Microgravity Stress , 2008, Genom. Proteom. Bioinform..

[19]  G. Shefer,et al.  Defining the transcriptional signature of skeletal muscle stem cells. , 2008, Journal of animal science.

[20]  Ruth K Globus,et al.  The hindlimb unloading rat model: literature overview, technique update and comparison with space flight data. , 2005, Advances in space biology and medicine.

[21]  B. Shenkman,et al.  [The role of support afferents in organisation of the tonic muscle system]. , 2004, Rossiiskii fiziologicheskii zhurnal imeni I.M. Sechenova.

[22]  V R Edgerton,et al.  Gravitational unloading effects on muscle fiber size, phenotype and myonuclear number. , 2002, Advances in space research : the official journal of the Committee on Space Research.

[23]  M. Buckingham Skeletal muscle formation in vertebrates. , 2001, Current opinion in genetics & development.

[24]  S. Gordon,et al.  The effects of 10 days of spaceflight on the shuttle Endeavour on predominantly fast-twitch muscles in the rat , 2000, Histochemistry and Cell Biology.

[25]  Dirk Bohmann,et al.  Diverse functions of JNK signaling and c-Jun in stress response and apoptosis , 1999, Oncogene.

[26]  G. Prendergast,et al.  Mechanisms of apoptosis by c-Myc , 1999, Oncogene.

[27]  P. Mozdziak,et al.  Hindlimb suspension reduces muscle regeneration , 1998, European Journal of Applied Physiology and Occupational Physiology.

[28]  S. Gordon,et al.  Comparison of soleus muscles from rats exposed to microgravity for 10 versus 14 days , 1998, Histochemistry and Cell Biology.

[29]  E. Schultz,et al.  Acute effects of hindlimb unweighting on satellite cells of growing skeletal muscle. , 1994, Journal of applied physiology.

[30]  V R Edgerton,et al.  Rat soleus muscle fiber responses to 14 days of spaceflight and hindlimb suspension. , 1992, Journal of applied physiology.

[31]  D. Desplanches,et al.  Skeletal muscle adaptation in rats flown on Cosmos 1667. , 1990, Journal of applied physiology.

[32]  E. Schultz,et al.  Hindlimb suspension suppresses muscle growth and satellite cell proliferation. , 1989, Journal of applied physiology.

[33]  R E Grindeland,et al.  Influence of spaceflight on rat skeletal muscle. , 1988, Journal of applied physiology.