Depolarizing differential Mueller matrices.

The evolution of a polarized beam can be described by the differential formulation of Mueller calculus. The nondepolarizing differential Mueller matrices are well known. However, they only account for 7 out of the 16 independent parameters that are necessary to model a general anisotropic depolarizing medium. In this work we present the nine differential Mueller matrices for general depolarizing media, highlighting the physical implications of each of them. Group theory is applied to establish the relationship between the differential matrix and the set of transformation generators in the Minkowski space, of which Lorentz generators constitute a particular subgroup.

[1]  R. Sridhar,et al.  Normal form for Mueller Matrices in Polarization Optics , 1994 .

[2]  R. Barakat Exponential versions of the Jones and Mueller–Jones polarization matrices , 1996 .

[3]  Dennis H. Goldstein,et al.  Polarized Light , 2010 .

[4]  C. Brosseau,et al.  Evolution of the Stokes parameters in optically anisotropic media. , 1995, Optics letters.

[5]  N. Ortega-Quijano,et al.  Comparative study of optical activity in chiral biological media by polar decomposition and differential Mueller matrices analysis , 2011, BiOS.

[6]  S. Cloude Group theory and polarisation algebra , 1986 .

[7]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[8]  R. Clark Jones,et al.  A New Calculus for the Treatment of Optical Systems. VII. Properties of the N-Matrices , 1948 .

[9]  Rasheed M. A. Azzam,et al.  Propagation of partially polarized light through anisotropic media with or without depolarization: A differential 4 × 4 matrix calculus , 1978 .

[10]  Antonello De Martino,et al.  Experimental evidence for naturally occurring nondiagonal depolarizers. , 2009, Optics letters.

[11]  V. Devlaminck Mueller matrix interpolation in polarization optics. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[12]  D. Han,et al.  Stokes Parameters as a Minkowskian Four-vector , 1997, physics/9707016.

[13]  F. U. Muhammad,et al.  Lorentz group underpinnings for the Jones and Mueller calculi , 1994, Optics & Photonics.

[14]  J. L. Arce-Diego,et al.  Mueller matrix differential decomposition. , 2011, Optics letters.