Reduced-Bias Tail Index Estimators Under a Third-Order Framework

In this article, we are interested in the comparison, under a third-order framework, of classes of second-order, reduced-bias tail index estimators, giving particular emphasis to minimum-variance reduced-bias estimators of the tail index γ. The full asymptotic distributional properties of the proposed classes are derived under a third-order framework and the estimators are compared with other alternatives, not only asymptotically, but also for finite samples through Monte Carlo techniques. An application to the log-exchange rates of the Euro against the USA Dollar is also provided.

[1]  M. Ivette Gomes,et al.  Mixed moment estimator and location invariant alternatives , 2009 .

[2]  A. Rényi On the theory of order statistics , 1953 .

[3]  M. Gomes,et al.  Bias reduction and explicit semi-parametric estimation of the tail index , 2004 .

[4]  M. Gomes,et al.  Generalized jackknife semi-parametric estimators of the tail index. , 2002 .

[5]  M. Neves,et al.  Alternatives to a Semi-Parametric Estimator of Parameters of Rare Events—The Jackknife Methodology* , 2000 .

[6]  R. Fisher,et al.  Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[7]  M. Gomes,et al.  Reduced‐bias tail index estimation and the jackknife methodology , 2007 .

[8]  Jan Beirlant,et al.  Tail Index Estimation and an Exponential Regression Model , 1999 .

[9]  Liang Peng,et al.  Semi-parametric Estimation of the Second Order Parameter in Statistics of Extremes , 2002 .

[10]  Edgar Kaufmann Penultimate Approximations in Extreme Value Theory , 2000 .

[11]  H. Drees A general class of estimators of the extreme value index , 1998 .

[12]  Frederico Caeiro,et al.  Bias reduction of a tail index estimator through an external estimation of the second-order parameter , 2004 .

[13]  P. Hall,et al.  Estimating a tail exponent by modelling departure from a Pareto distribution , 1999 .

[14]  M. Ivette Gomes,et al.  Approximation by Penultimate Extreme Value Distributions , 1998 .

[15]  J.-P. Raoult,et al.  Rate of convergence for the generalized Pareto approximation of the excesses , 2003, Advances in Applied Probability.

[16]  M. Ivette Gomes,et al.  Penultimate limiting forms in extreme value theory , 1984 .

[17]  M. Gomes,et al.  Asymptotic comparison of the mixed moment and classical extreme value index estimators , 2008 .

[18]  M. Gomes,et al.  Generalizations of the Hill estimator – asymptotic versus finite sample behaviour☆ , 2001 .

[19]  M. Ivette Gomes,et al.  DIRECT REDUCTION OF BIAS OF THE CLASSI- CAL HILL ESTIMATOR ⁄ , 2005 .

[20]  D. Pestana,et al.  A simple second-order reduced bias’ tail index estimator , 2007 .

[21]  M. J. Martins,et al.  “Asymptotically Unbiased” Estimators of the Tail Index Based on External Estimation of the Second Order Parameter , 2002 .

[22]  M. Gomes,et al.  Revisiting the Role of the Jackknife Methodology in the Estimation of a Positive Tail Index , 2005 .

[23]  M. Ivette Gomes,et al.  A new class of semi-parametric estimators of the second order parameter. , 2003 .

[24]  M. Ivette Gomes,et al.  A Sturdy Reduced-Bias Extreme Quantile (VaR) Estimator , 2007 .

[25]  M. Ivette Gomes,et al.  Tail index estimation for heavy‐tailed models: accommodation of bias in weighted log‐excesses , 2007 .

[26]  C. Klüppelberg,et al.  Modelling Extremal Events , 1997 .

[27]  Frederico Caeiro,et al.  A class of asymptotically unbiased semi-parametric estimators of the tail index , 2002 .

[28]  Liang Peng,et al.  Comparison of tail index estimators , 1998 .

[29]  Jan Beirlant,et al.  On Exponential Representations of Log-Spacings of Extreme Order Statistics , 2002 .

[30]  Frederico Caeiro,et al.  A new class of estimators of a “scale” second order parameter , 2007 .

[31]  Liang Peng,et al.  Asymptotically unbiased estimators for the extreme-value index , 1998 .

[32]  Frederico Caeiro,et al.  A note on the asymptotic variance at optimal levels of a bias-corrected Hill estimator , 2009 .

[33]  J. Geluk,et al.  Regular variation, extensions and Tauberian theorems , 1987 .

[34]  Liang Peng,et al.  Estimating the First‐ and Second‐Order Parameters of a Heavy‐Tailed Distribution , 2004 .

[35]  Alan H. Welsh,et al.  Adaptive Estimates of Parameters of Regular Variation , 1985 .

[36]  M. Gomes,et al.  Asymptotically best linear unbiased tail estimators under a second-order regular variation condition , 2005 .

[37]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .