Reduced-Bias Tail Index Estimators Under a Third-Order Framework
暂无分享,去创建一个
[1] M. Ivette Gomes,et al. Mixed moment estimator and location invariant alternatives , 2009 .
[2] A. Rényi. On the theory of order statistics , 1953 .
[3] M. Gomes,et al. Bias reduction and explicit semi-parametric estimation of the tail index , 2004 .
[4] M. Gomes,et al. Generalized jackknife semi-parametric estimators of the tail index. , 2002 .
[5] M. Neves,et al. Alternatives to a Semi-Parametric Estimator of Parameters of Rare Events—The Jackknife Methodology* , 2000 .
[6] R. Fisher,et al. Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.
[7] M. Gomes,et al. Reduced‐bias tail index estimation and the jackknife methodology , 2007 .
[8] Jan Beirlant,et al. Tail Index Estimation and an Exponential Regression Model , 1999 .
[9] Liang Peng,et al. Semi-parametric Estimation of the Second Order Parameter in Statistics of Extremes , 2002 .
[10] Edgar Kaufmann. Penultimate Approximations in Extreme Value Theory , 2000 .
[11] H. Drees. A general class of estimators of the extreme value index , 1998 .
[12] Frederico Caeiro,et al. Bias reduction of a tail index estimator through an external estimation of the second-order parameter , 2004 .
[13] P. Hall,et al. Estimating a tail exponent by modelling departure from a Pareto distribution , 1999 .
[14] M. Ivette Gomes,et al. Approximation by Penultimate Extreme Value Distributions , 1998 .
[15] J.-P. Raoult,et al. Rate of convergence for the generalized Pareto approximation of the excesses , 2003, Advances in Applied Probability.
[16] M. Ivette Gomes,et al. Penultimate limiting forms in extreme value theory , 1984 .
[17] M. Gomes,et al. Asymptotic comparison of the mixed moment and classical extreme value index estimators , 2008 .
[18] M. Gomes,et al. Generalizations of the Hill estimator – asymptotic versus finite sample behaviour☆ , 2001 .
[19] M. Ivette Gomes,et al. DIRECT REDUCTION OF BIAS OF THE CLASSI- CAL HILL ESTIMATOR ⁄ , 2005 .
[20] D. Pestana,et al. A simple second-order reduced bias’ tail index estimator , 2007 .
[21] M. J. Martins,et al. “Asymptotically Unbiased” Estimators of the Tail Index Based on External Estimation of the Second Order Parameter , 2002 .
[22] M. Gomes,et al. Revisiting the Role of the Jackknife Methodology in the Estimation of a Positive Tail Index , 2005 .
[23] M. Ivette Gomes,et al. A new class of semi-parametric estimators of the second order parameter. , 2003 .
[24] M. Ivette Gomes,et al. A Sturdy Reduced-Bias Extreme Quantile (VaR) Estimator , 2007 .
[25] M. Ivette Gomes,et al. Tail index estimation for heavy‐tailed models: accommodation of bias in weighted log‐excesses , 2007 .
[26] C. Klüppelberg,et al. Modelling Extremal Events , 1997 .
[27] Frederico Caeiro,et al. A class of asymptotically unbiased semi-parametric estimators of the tail index , 2002 .
[28] Liang Peng,et al. Comparison of tail index estimators , 1998 .
[29] Jan Beirlant,et al. On Exponential Representations of Log-Spacings of Extreme Order Statistics , 2002 .
[30] Frederico Caeiro,et al. A new class of estimators of a “scale” second order parameter , 2007 .
[31] Liang Peng,et al. Asymptotically unbiased estimators for the extreme-value index , 1998 .
[32] Frederico Caeiro,et al. A note on the asymptotic variance at optimal levels of a bias-corrected Hill estimator , 2009 .
[33] J. Geluk,et al. Regular variation, extensions and Tauberian theorems , 1987 .
[34] Liang Peng,et al. Estimating the First‐ and Second‐Order Parameters of a Heavy‐Tailed Distribution , 2004 .
[35] Alan H. Welsh,et al. Adaptive Estimates of Parameters of Regular Variation , 1985 .
[36] M. Gomes,et al. Asymptotically best linear unbiased tail estimators under a second-order regular variation condition , 2005 .
[37] B. M. Hill,et al. A Simple General Approach to Inference About the Tail of a Distribution , 1975 .