Deep Impact photometry of Comet 9p/Tempel 1

Abstract The photometric properties of the nucleus of Comet 9P/Tempel 1 are studied from the disk-resolved color images obtained by Deep Impact (DI). Comet Tempel 1 has typical photometric properties for comets and dark asteroids. The disk-integrated spectrum of the nucleus of Tempel 1 between 309 and 950 nm is linear without any features at the spectral resolution of the filtered images. At V -band, the red slope of the nucleus is 12.5 ± 1 % per 100 nm at 63° phase angle, translating to B – V = 0.84 ± 0.01 , V – R = 0.50 ± 0.01 , and R – I = 0.49 ± 0.02 . No phase reddening is confirmed. The phase function of the nucleus of Tempel 1 is constructed from DI images and earlier ground-based observations found from the literature. The phase coefficient is determined to be β = 0.046 ± 0.007 mag / deg between 4° and 117° phase angle. Hapke's theoretical scattering model was used to model the photometric properties of this comet. Assuming a single Henyey–Greenstein function for the single-particle phase function, the asymmetry factor of Tempel 1 was fitted to be g = − 0.49 ± 0.02 , and the corresponding single-scattering albedo (SSA) was modeled to be 0.039 ± 0.005 at 550 nm wavelength. The SSA spectrum shows a similar linear slope to that of the disk-integrated spectrum. The roughness parameter is found to be 16 ° ± 8 ° , and independent of wavelength. The Minnaert k parameter is modeled to be 0.680 ± 0.014 . The photometric variations on Tempel 1 are relatively small compared to other comets and asteroids, with a ∼ 20 % full width at half maximum of albedo variation histogram, and ∼ 3 % for color. Roughness variations are evident in one small area, with a roughness parameter about twice the average and appearing to correlate with the complex morphological texture seen in high-resolution images.

[1]  J. Veverka,et al.  Physical characterization of asteroid surfaces from photometric analysis , 1989 .

[2]  Robert J. Hanisch,et al.  The restoration of HST images and spectra - II , 2015 .

[3]  M. Belton,et al.  Photometric analysis and disk-resolved thermal modeling of Comet 19P/Borrelly from Deep Space 1 data , 2007 .

[4]  J. Kay,et al.  Phoebe: Albedo Map and Photometric Properties , 1999 .

[5]  Bonnie J. Buratti,et al.  Multispectral photometry of the Moon and absolute calibration of the Clementine UV/Vis camera , 1999 .

[6]  J. Veverka,et al.  The Surface of Deimos: Contribution of Materials and Processes to Its Unique Appearance , 1996 .

[7]  H. Melosh,et al.  Deep Impact: Excavating Comet Tempel 1 , 2005, Science.

[8]  Z. Nyitrai,et al.  Television observations of comet Halley from Vega spacecraft , 1986 .

[9]  Cesare Barbieri,et al.  First Halley Multicolour Camera imaging results from Giotto , 1986 .

[10]  Karen J. Meech,et al.  Comet nucleus size distributions from HST and Keck telescopes , 2004 .

[11]  Don J. Lindler,et al.  Restoration of Images of Comet 9P/Tempel 1 Taken with the Deep Impact High Resolution Instrument , 2007 .

[12]  Brian Carcich,et al.  A ballistics analysis of the Deep Impact ejecta plume: Determining Comet Tempel 1's gravity, mass, and density , 2007 .

[13]  M. Minnaert The reciprocity principle in lunar photometry , 1941 .

[14]  M. Belton,et al.  Dust coma morphology in the Deep Impact images of Comet 9P/Tempel 1 , 2007 .

[15]  D. Jewitt,et al.  143P/Kowal-Mrkos and the Shapes of Cometary Nuclei , 2003 .

[16]  Bonnie J. Buratti,et al.  Deep Space 1 photometry of the nucleus of Comet 19P/Borrelly , 2004 .

[17]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[18]  J. Veverka,et al.  Photometric Properties of Phobos Surface Materials From Viking Images , 1998 .

[19]  N. Biver,et al.  The Deep Impact Earth-Based Campaign , 2005 .

[20]  A. Cox,et al.  Allen's astrophysical quantities , 2000 .

[21]  R. Kirk,et al.  The nucleus of Comet Borrelly: a study of morphology and surface brightness , 2004 .

[22]  Eliot F. Young,et al.  Photometric analysis of 1 Ceres and surface mapping from HST observations , 2006 .

[23]  Arlo U. Landolt,et al.  UBVRI Photometric Standard Stars in the Magnitude Range 11 , 1992 .

[24]  M. A’Hearn,et al.  Photometric analysis of Eros from NEAR data , 2004 .

[25]  S. Murchie,et al.  Color Variations on Eros from NEAR Multispectral Imaging , 2002 .

[26]  B. Hapke Bidirectional reflectance spectroscopy , 1984 .

[27]  L. Jorda,et al.  Rotational state of the nucleus of Comet 9P/Tempel 1: Results from Hubble Space Telescope observations in 2004 , 2007 .

[28]  J. Sunshine,et al.  Asymmetries in the distribution of H2O and CO2 in the inner coma of Comet 9P/Tempel 1 as observed by Deep Impact , 2007 .

[29]  A. McEwen,et al.  Galileo Photometry of Asteroid 243 Ida , 1996 .

[30]  James W. Baer,et al.  An Overview of the Instrument Suite for the Deep Impact Mission , 2005 .

[31]  A. McEwen Photometric functions for photoclinometry and other applications , 1991 .

[32]  Bruce Hapke,et al.  Bidirectional Reflectance Spectroscopy: 5. The Coherent Backscatter Opposition Effect and Anisotropic Scattering , 2002 .

[33]  W. Delamere,et al.  The internal structure of Jupiter family cometary nuclei from Deep Impact observations: The “talps” or “layered pile” model , 2007 .

[34]  R. Kirk,et al.  Comparison of USGS and DLR topographic models of Comet Borrelly and photometric applications , 2004 .

[35]  M. Belton,et al.  Rotationally Resolved 8-35 Micron Spitzer Space Telescope Observations of the Nucleus of Comet 9P/Tempel 1 , 2005 .

[36]  J. Veverka,et al.  Photometry of rough planetary surfaces: The role of multiple scattering , 1985 .

[37]  Philippe Lamy,et al.  Physical Properties of the Nucleus of Comet 2P/Encke , 2000 .

[38]  P. Lamy,et al.  The sizes, shapes, albedos, and colors of cometary nuclei , 2004 .

[39]  M. Belton,et al.  Deep Impact: Working Properties for the Target Nucleus – Comet 9P/Tempel 1 , 2005 .

[40]  Clark R. Chapman,et al.  Galileo Photometry of Asteroid 951 Gaspra , 1994 .

[41]  Alan W. Delamere,et al.  Deep Impact instrument calibration , 2008 .

[42]  Nicolas Thomas,et al.  Imaging borrelly : DS1/Comet Borrelly , 2004 .

[43]  Peter H. Schultz,et al.  The shape, topography, and geology of Tempel 1 from Deep Impact observations , 2007 .

[44]  R. Reinhard The Giotto encounter with comet Halley , 1986 .

[45]  P. Weissman,et al.  Hubble Space Telescope observations of the nucleus of Comet 9P/Tempel 1 , 2001 .

[46]  H. Campins,et al.  The bare nucleus of comet Neujmin 1 , 1987 .

[47]  D. Brownlee,et al.  Surface of Young Jupiter Family Comet 81P/Wild 2: View from the Stardust Spacecraft , 2004, Science.

[48]  E. Dotto,et al.  Detailed phase function of comet 28P/Neujmin 1 , 2001 .

[49]  A. A. Galeev,et al.  Vega spacecraft encounters with comet Halley , 1986 .

[50]  Clark R. Chapman,et al.  NEAR Photometry of Asteroid 253 Mathilde , 1999 .

[51]  D. Brownlee,et al.  Topography of the 81/P Wild 2 Nucleus Derived from Stardust Stereoimages , 2005 .

[52]  J. Fernie,et al.  RELATIONSHIPS BETWEEN THE JOHNSON AND KRON-COUSINS VRI PHOTOMETRIC SYSTEMS. , 1983 .

[53]  K. P. Klaasen,et al.  Exposed Water Ice Deposits on the Surface of Comet 9P/Tempel 1 , 2006, Science.

[54]  J. Bell,et al.  Spectral properties and geologic processes on Eros from combined NEAR NIS and MSI data sets , 2003 .

[55]  Karen J. Meech,et al.  The nucleus of Deep Impact target Comet 9P/Tempel 1 , 2003 .