Energetics of M2 Barotropic-to-Baroclinic Tidal Conversion at the Hawaiian Islands

Abstract A high-resolution primitive equation model simulation is used to form an energy budget for the principal semidiurnal tide (M2) over a region of the Hawaiian Ridge from Niihau to Maui. This region includes the Kaena Ridge, one of the three main internal tide generation sites along the Hawaiian Ridge and the main study site of the Hawaii Ocean Mixing Experiment. The 0.01°–horizontal resolution simulation has a high level of skill when compared to satellite and in situ sea level observations, moored ADCP currents, and notably reasonable agreement with microstructure data. Barotropic and baroclinic energy equations are derived from the model’s sigma coordinate governing equations and are evaluated from the model simulation to form an energy budget. The M2 barotropic tide loses 2.7 GW of energy over the study region. Of this, 163 MW (6%) is dissipated by bottom friction and 2.3 GW (85%) is converted into internal tides. Internal tide generation primarily occurs along the flanks of the Kaena Ridge and ...

[1]  M. Merrifield,et al.  Model Estimates of M2 Internal Tide Generation over Mid-Atlantic Ridge Topography , 2009 .

[2]  N. Balmforth,et al.  Tidal Conversion by Supercritical Topography , 2009 .

[3]  M. Merrifield,et al.  Boundary Mixing Associated with Tidal and Near-Inertial Internal Waves , 2008 .

[4]  Jonathan D. Nash,et al.  Diagnosing a partly standing internal wave in Mamala Bay, Oahu , 2007 .

[5]  M. Merrifield,et al.  Flow and Mixing around a Small Seamount on Kaena Ridge, Hawaii , 2006 .

[6]  S. G. L. Smith,et al.  Numerical and Analytical Estimates of M2 Tidal Conversion at Steep Oceanic Ridges , 2006 .

[7]  M. Merrifield,et al.  Tidal Mixing Events on the Deep Flanks of Kaena Ridge, Hawaii , 2006 .

[8]  Craig M. Lee,et al.  An Estimate of Tidal Energy Lost to Turbulence at the Hawaiian Ridge , 2006 .

[9]  G. Egbert,et al.  Estimating Open-Ocean Barotropic Tidal Dissipation: The Hawaiian Ridge , 2006 .

[10]  Craig M. Lee,et al.  Structure of the Baroclinic Tide Generated at Kaena Ridge, Hawaii , 2006 .

[11]  M. Merrifield,et al.  Structure, Propagation, and Mixing of Energetic Baroclinic Tides in Mamala Bay, Oahu, Hawaii , 2006 .

[12]  Craig M. Lee,et al.  Internal Tides and Turbulence along the 3000-m Isobath of the Hawaiian Ridge , 2006 .

[13]  M. Gregg,et al.  Persistent Near-Diurnal Internal Waves Observed above a Site of M2 Barotropic-to-Baroclinic Conversion , 2006 .

[14]  K. Katsumata Tidal stirring and mixing on the Australian North West Shelf , 2006 .

[15]  O. Fringer,et al.  Nonhydrostatic and nonlinear contributions to the energy flux budget in nonlinear internal waves , 2005 .

[16]  R. Hallberg,et al.  Internal wave generation in a global baroclinic tide model , 2004 .

[17]  K. Lamb Nonlinear interaction among internal wave beams generated by tidal flow over supercritical topography , 2004 .

[18]  M. Merrifield,et al.  Structure and variability of semidiurnal internal tides in Mamala Bay, Hawaii , 2004 .

[19]  P. Holloway,et al.  Internal tide scattering at the Line Islands Ridge , 2003 .

[20]  Craig M. Lee,et al.  From Tides to Mixing Along the Hawaiian Ridge , 2003, Science.

[21]  M. Merrifield,et al.  Internal tide scattering at seamounts, ridges, and islands , 2003 .

[22]  M. Gregg,et al.  Intense, Variable Mixing near the Head of Monterey Submarine Canyon , 2002 .

[23]  L. S. Laurent,et al.  The Role of Internal Tides in Mixing the Deep Ocean , 2002 .

[24]  P. Holloway,et al.  Model estimates of M2 internal tide energetics at the Hawaiian Ridge , 2002 .

[25]  Rob A. Hall,et al.  Internal Tides in Monterey Submarine Canyon , 2002 .

[26]  G. Egbert,et al.  Efficient Inverse Modeling of Barotropic Ocean Tides , 2002 .

[27]  T. Hibiya,et al.  Numerical study of the spatial distribution of the M2 internal tide in the Pacific Ocean , 2001 .

[28]  Gary D. Egbert,et al.  Estimates of M2 Tidal Energy Dissipation from TOPEX/Poseidon Altimeter Data , 2001 .

[29]  P. Holloway,et al.  The generation of internal tides at the Hawaiian Ridge , 2001 .

[30]  G. D. Egbert,et al.  Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data , 2000, Nature.

[31]  J. Cherniawsky,et al.  Numerical Modeling of Internal Tide Generation along the Hawaiian Ridge , 2000 .

[32]  P. Holloway,et al.  Internal tide generation by seamounts, ridges, and islands , 1999 .

[33]  Walter H. F. Smith,et al.  Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings , 1997 .

[34]  Patrick F. Cummins,et al.  Simulation of Barotropic and Baroclinic Tides off Northern British Columbia , 1997 .

[35]  G. Mitchum,et al.  Surface manifestation of internal tides generated near Hawaii , 1996 .

[36]  Bruce M. Howe,et al.  Barotropic and Baroclinic Tides in the Central North Pacific Ocean Determined from Long-Range Reciprocal Acoustic Transmissions , 1995 .

[37]  S. Chiswell Vertical Structure of the Baroclinic Tides in the Central North Pacific Subtropical Gyre , 1994 .

[38]  George L. Mellor,et al.  The Pressure Gradient Conundrum of Sigma Coordinate Ocean Models , 1994 .

[39]  J. Wesson,et al.  Mixing at Camarinal Sill in the Strait of Gibraltar , 1994 .

[40]  M. Gregg,et al.  Diapycnal mixing in the thermocline: A review , 1987 .

[41]  G. Mellor,et al.  Development of a turbulence closure model for geophysical fluid problems , 1982 .

[42]  N. Oakey,et al.  Determination of the Rate of Dissipation of Turbulent Energy from Simultaneous Temperature and Velocity Shear Microstructure Measurements , 1982 .

[43]  Glenn S. Carter,et al.  Open boundary conditions for regional tidal simulations , 2007 .

[44]  Chris Garrett,et al.  Internal Tide Generation in the Deep Ocean , 2007 .

[45]  Gary D. Egbert,et al.  Verification Studies for a Z-Coordinate Primitive-Equation Model: Tidal Conversion at a Mid-Ocean Ridge , 2006 .

[46]  B. Hodges,et al.  Numerical error assessment and a temporal horizon for internal waves in a hydrostatic model , 2006 .

[47]  A. Mahadevan Modeling vertical motion at ocean fronts: Are nonhydrostatic effects relevant at submesoscales? , 2006 .

[48]  Timothy John Boyd,et al.  Mooring observations from the Hawaiian Ridge : August 2002 - June 2003 : a component of the Hawaii Ocean Mixing Experiment (HOME) Nearfield Program , 2005 .

[49]  John C. Warner,et al.  Performance of four turbulence closure models implemented using a generic length scale method , 2005 .

[50]  G. Ierley,et al.  Tidal conversion by subcritical topography , 2001 .

[51]  G. Mellor USERS GUIDE for A THREE-DIMENSIONAL, PRIMITIVE EQUATION, NUMERICAL OCEAN MODEL , 1998 .

[52]  G. Egbert Tidal data inversion: interpolation and inference , 1997 .

[53]  Gary T. Mitchum,et al.  Surface manifestation of internal tides in the deep ocean: observations from altimetry and island gauges , 1997 .

[54]  T. Osborn,et al.  Estimates of the Local Rate of Vertical Diffusion from Dissipation Measurements , 1980 .

[55]  T. Osborn,et al.  An Airfoil Probe for Measuring Turbulent Velocity Fluctuations in Water , 1980 .

[56]  J. Larsen Cotidal Charts for the Pacific Ocean near Hawaii Using f-Plane Solutions , 1977 .

[57]  R. Flather A tidal model of the north-west European continental shelf , 1976 .