Universal topological quantum computation from a superconductor/Abelian quantum Hall heterostructure

Non-Abelian anyons promise to reveal spectacular features of quantum mechanics that could ultimately provide the foundation for a decoherence-free quantum computer. A key breakthrough in the pursuit of these exotic particles originated from Read and Green's observation that the Moore-Read quantum Hall state and a (relatively simple) two-dimensional p+ip superconductor both support so-called Ising non-Abelian anyons. Here we establish a similar correspondence between the Z_3 Read-Rezayi quantum Hall state and a novel two-dimensional superconductor in which charge-2e Cooper pairs are built from fractionalized quasiparticles. In particular, both phases harbor Fibonacci anyons that---unlike Ising anyons---allow for universal topological quantum computation solely through braiding. Using a variant of Teo and Kane's construction of non-Abelian phases from weakly coupled chains, we provide a blueprint for such a superconductor using Abelian quantum Hall states interlaced with an array of superconducting islands. Fibonacci anyons appear as neutral deconfined particles that lead to a two-fold ground-state degeneracy on a torus. In contrast to a p+ip superconductor, vortices do not yield additional particle types yet depending on non-universal energetics can serve as a trap for Fibonacci anyons. These results imply that one can, in principle, combine well-understood and widely available phases of matter to realize non-Abelian anyons with universal braid statistics. Numerous future directions are discussed, including speculations on alternative realizations with fewer experimental requirements.

[1]  N. Lindner,et al.  Parafermionic conformal field theory on the lattice , 2014, 1406.0846.

[2]  Y. Oreg,et al.  Fractional helical liquids in quantum wires , 2014 .

[3]  M. Metlitski A symmetry-respecting topologically-ordered surface phase of 3d electron topological insulators , 2014 .

[4]  Andrew C. Potter,et al.  Classification of Interacting Electronic Topological Insulators in Three Dimensions , 2013, Science.

[5]  A. Vishwanath,et al.  Symmetry Enforced Non-Abelian Topological Order at the Surface of a Topological Insulator , 2013, 1306.3250.

[6]  X. Qi,et al.  Synthetic Topological Qubits in Conventional Bilayer Quantum Hall Systems , 2013, 1302.2673.

[7]  A. Akhmerov,et al.  Statistical topological insulators , 2012, 1212.6191.

[8]  X. Qi,et al.  A time-reversal invariant topological phase at the surface of a 3D topological insulator , 2013, 1306.3230.

[9]  Maissam Barkeshli,et al.  Theory of defects in Abelian topological states , 2013, 1305.7203.

[10]  Maissam Barkeshli,et al.  Classification of Topological Defects in Abelian Topological States , 2013, 1304.7579.

[11]  C. M. Marcus,et al.  Superconductor-nanowire devices from tunneling to the multichannel regime: Zero-bias oscillations and magnetoconductance crossover , 2013, 1303.2407.

[12]  N. Lindner,et al.  Topological Quantum Computation—From Basic Concepts to First Experiments , 2013, Science.

[13]  B. V. Heck,et al.  Topological phases in two-dimensional arrays of parafermionic zero modes , 2013, 1302.4560.

[14]  Y. Oreg,et al.  Fractional Helical Liquids and Non-Abelian Anyons in Quantum Wires , 2013, 1301.7335.

[15]  K. West,et al.  Magnetic-field-tuned Aharonov-Bohm oscillations and evidence for non-Abelian anyons at ν = 5/2. , 2013, Physical review letters.

[16]  Xiuling Li,et al.  Anomalous modulation of a zero-bias peak in a hybrid nanowire-superconductor device. , 2012, Physical review letters.

[17]  Parsa Bonderson Measurement-only topological quantum computation via tunable interactions , 2012, 1210.7929.

[18]  M. Troyer,et al.  Fibonacci topological order from quantum nets. , 2012, Physical review letters.

[19]  Matthew B. Hastings,et al.  Metaplectic Anyons, Majorana Zero Modes, and their Computational Power , 2012, 1210.5477.

[20]  Maissam Barkeshli,et al.  Twist defects and projective non-Abelian braiding statistics , 2012, 1208.4834.

[21]  A. Shnirman,et al.  Engineering and manipulating topological qubits in 1D quantum wires , 2012, 1207.2691.

[22]  G. Refael,et al.  Magneto-Josephson effects in junctions with Majorana bound states , 2012, 1206.1581.

[23]  A. Vaezi,et al.  Fractional topological superconductor with fractionalized Majorana fermions , 2012, 1204.6245.

[24]  Jason Alicea,et al.  Exotic non-Abelian anyons from conventional fractional quantum Hall states , 2012, Nature Communications.

[25]  Y. Oreg,et al.  Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions , 2012, Nature Physics.

[26]  Guang-Yao Huang,et al.  Anomalous zero-bias conductance peak in a Nb-InSb nanowire-Nb hybrid device. , 2012, Nano letters.

[27]  Jacek K. Furdyna,et al.  The fractional a.c. Josephson effect in a semiconductor–superconductor nanowire as a signature of Majorana particles , 2012, Nature Physics.

[28]  P. Fendley Parafermionic edge zero modes in Zn-invariant spin chains , 2012, 1209.0472.

[29]  C. Kane,et al.  Topology, delocalization via average symmetry and the symplectic Anderson transition. , 2012, Physical review letters.

[30]  M. Gilbert,et al.  Fractional spin Josephson effect and electrically controlled magnetization in quantum spin Hall edges , 2012, 1206.1295.

[31]  M. Cheng Superconducting Proximity Effect on the Edge of Fractional Topological Insulators , 2012, 1204.6084.

[32]  Gil Refael,et al.  Fractionalizing Majorana fermions: non-abelian statistics on the edges of abelian quantum Hall states , 2012, 1204.5733.

[33]  E. Bakkers,et al.  Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices , 2012, Science.

[34]  N. Nagaosa,et al.  Topological indices, defects, and Majorana fermions in chiral superconductors , 2012, 1203.6707.

[35]  Jason Alicea,et al.  New directions in the pursuit of Majorana fermions in solid state systems , 2012, Reports on progress in physics. Physical Society.

[36]  H. Hwang,et al.  BASIC NOTIONS , 2022 .

[37]  N. Kumada,et al.  Unraveling the Spin Polarization of the ν = 5/2 Fractional Quantum Hall State , 2012, Science.

[38]  G. Refael,et al.  Adiabatic manipulations of Majorana fermions in a three-dimensional network of quantum wires , 2011, 1112.5333.

[39]  C. Kane,et al.  From Luttinger liquid to non-Abelian quantum Hall states , 2011, 1111.2617.

[40]  Yi Zhang,et al.  Quasiparticle statistics and braiding from ground state entanglement , 2011, 1111.2342.

[41]  J. Bardarson,et al.  Quantum transport and two-parameter scaling at the surface of a weak topological insulator. , 2011, Physical review letters.

[42]  A. Stern,et al.  Strong side of weak topological insulators , 2011, 1105.4351.

[43]  W. Marsden I and J , 2012 .

[44]  S. Simon,et al.  Braiding of Abelian and Non-Abelian Anyons in the Fractional Quantum Hall Effect , 2011, 1112.3400.

[45]  X. Qi,et al.  Topological Nematic States and Non-Abelian Lattice Dislocations , 2011, 1112.3311.

[46]  C. Beenakker,et al.  Search for Majorana Fermions in Superconductors , 2011, 1112.1950.

[47]  A. Cook,et al.  Majorana fermions in a topological-insulator nanowire proximity-coupled to an s -wave superconductor , 2011 .

[48]  K. Yada,et al.  Theory of edge states in a quantum anomalous Hall insulator/ spin-singlet s-wave superconductor hybrid system , 2011, 1103.2015.

[49]  A. Stern,et al.  Observing Majorana bound states of Josephson vortices in topological superconductors , 2010, Proceedings of the National Academy of Sciences.

[50]  S. Tewari,et al.  Majorana fermion exchange in quasi-one-dimensional networks , 2010, 1012.0296.

[51]  Parsa Bonderson,et al.  Plasma analogy and non-Abelian statistics for Ising-type quantum Hall states , 2010, 1008.5194.

[52]  G. Refael,et al.  Non-Abelian statistics and topological quantum information processing in 1D wire networks , 2010, 1006.4395.

[53]  M. Freedman,et al.  Projective ribbon permutation statistics: A remnant of non-Abelian braiding in higher dimensions , 2010, 1005.0583.

[54]  Matthias Troyer,et al.  Two-dimensional quantum liquids from interacting non-Abelian anyons , 2010, 1003.3453.

[55]  A. Ohtomo,et al.  Observation of the fractional quantum Hall effect in an oxide. , 2010, Nature materials.

[56]  T. Wojtowicz,et al.  Fractional quantum Hall effect in CdTe , 2010, 1006.0908.

[57]  C. Kane,et al.  Observation of neutral modes in the fractional quantum Hall regime , 2010, Nature.

[58]  Xiao-Liang Qi,et al.  Chiral topological superconductor from the quantum Hall state , 2010, 1003.5448.

[59]  G. Refael,et al.  Helical liquids and Majorana bound states in quantum wires. , 2010, Physical review letters.

[60]  S. Das Sarma,et al.  Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. , 2010, Physical review letters.

[61]  N. E. Bonesteel,et al.  Resources required for topological quantum factoring , 2010, 1002.0537.

[62]  Jason Alicea,et al.  Majorana fermions in a tunable semiconductor device , 2009, 0912.2115.

[63]  S Das Sarma,et al.  Generic new platform for topological quantum computation using semiconductor heterostructures. , 2009, Physical review letters.

[64]  K. West,et al.  Alternation and interchange of e/4 and e/2 period interference oscillations as evidence for filling factor 5/2 non-Abelian quasiparticles , 2009, 0911.0345.

[65]  P. Kim,et al.  Observation of the fractional quantum Hall effect in graphene , 2009, Nature.

[66]  Fabian Duerr,et al.  Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene , 2009, Nature.

[67]  E. Prodan,et al.  Mapping the braiding properties of the Moore-Read state , 2009, 1001.1930.

[68]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[69]  Tuning the proximity effect in a superconductor-graphene-superconductor junction , 2009, 0903.2963.

[70]  M. Fisher,et al.  Boundary conformal field theory and tunneling of edge quasiparticles in non-Abelian topological states , 2009, 0902.0998.

[71]  M. Baraban,et al.  Numerical analysis of quasiholes of the moore-read wave function. , 2009, Physical review letters.

[72]  Matthias Troyer,et al.  Collective states of interacting anyons, edge states, and the nucleation of topological liquids. , 2008, Physical review letters.

[73]  F. Bais,et al.  Condensate-induced transitions between topologically ordered phases , 2008, 0808.0627.

[74]  L. N. Pfeiffer,et al.  Measurement of filling factor 5/2 quasiparticle interference with observation of charge e/4 and e/2 period oscillations , 2008, Proceedings of the National Academy of Sciences.

[75]  N. Read,et al.  Non-Abelian adiabatic statistics and Hall viscosity in quantum Hall states and p(x) + ip(y) paired superfluids , 2008, 0805.2507.

[76]  C. Kane,et al.  Josephson current and noise at a superconductor/quantum-spin-Hall-insulator/superconductor junction , 2008, 0804.4469.

[77]  C. Beenakker,et al.  Splitting of a Cooper pair by a pair of Majorana bound states. , 2008, Physical review letters.

[78]  C. Nayak,et al.  Quantum Hall states at nu=(2/(k + 2)): Analysis of the particle-hole conjugates of the general level-k Read-Rezayi states , 2008 .

[79]  Matthias Troyer,et al.  A Short Introduction to Fibonacci Anyon Models , 2008, 0902.3275.

[80]  M. Kastner,et al.  Quasi-Particle Properties from Tunneling in the v = 5/2 Fractional Quantum Hall State , 2008, Science.

[81]  A. Seidel Pfaffian statistics through adiabatic transport in the 1D coherent state representation. , 2008, Physical review letters.

[82]  D. Mahalu,et al.  Observation of a quarter of an electron charge at the ν = 5/2 quantum Hall state , 2008, Nature.

[83]  Robert G. Leigh,et al.  Topological Entanglement Entropy in Chern-Simons Theories and Quantum Hall Fluids , 2008, 0802.3231.

[84]  M. Freedman,et al.  Measurement-only topological quantum computation. , 2008, Physical review letters.

[85]  K. West,et al.  Experimental studies of the fractional quantum Hall effect in the first excited Landau level , 2008, 0801.1318.

[86]  Josephson current and multiple Andreev reflections in graphene SNS junctions , 2007, 0710.4984.

[87]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[88]  L. Fu,et al.  Superconducting proximity effect and majorana fermions at the surface of a topological insulator. , 2007, Physical review letters.

[89]  Zhenghan Wang,et al.  On Classification of Modular Tensor Categories , 2007, 0712.1377.

[90]  Ady Stern,et al.  Anyons and the quantum Hall effect - a pedagogical review , 2007, 0711.4697.

[91]  M. Fisher,et al.  Particle-hole symmetry and the nu=5/2 quantum Hall state. , 2007, Physical review letters.

[92]  B. Rosenow,et al.  Particle-hole symmetry and the Pfaffian state. , 2007, Physical review letters.

[93]  L. Vandersypen,et al.  Bipolar supercurrent in graphene , 2006, Nature.

[94]  M. Fisher,et al.  Edge states and tunneling of non-Abelian quasiparticles in theν=5∕2quantum Hall state andp+ipsuperconductors , 2006, cond-mat/0607431.

[95]  Parsa Bonderson,et al.  Non-Abelian Anyons and Interferometry , 2007 .

[96]  M. Freedman,et al.  From String Nets to Nonabelions , 2006, cond-mat/0610583.

[97]  S. Bravyi Universal quantum computation with the v=5/2 fractional quantum Hall state , 2005, quant-ph/0511178.

[98]  Xiao-Gang Wen,et al.  Detecting topological order in a ground state wave function. , 2005, Physical review letters.

[99]  J. Preskill,et al.  Topological entanglement entropy. , 2005, Physical review letters.

[100]  M. Fisher,et al.  74 31 v 1 1 8 Ju l 2 00 6 Edge states and tunneling of non-Abelian quasiparticles in the ν = 5 / 2 quantum Hall state and p + ip superconductors , 2006 .

[101]  E. Fradkin,et al.  Realizing non-Abelian statistics in time-reversal-invariant systems , 2005, cond-mat/0502071.

[102]  Michael Levin,et al.  String-net condensation: A physical mechanism for topological phases , 2004, cond-mat/0404617.

[103]  K. West,et al.  Electron correlation in the second Landau level: a competition between many nearly degenerate quantum phases. , 2004, Physical review letters.

[104]  R. Roy,et al.  Edge modes, edge currents, and gauge invariance in p x + i p y superfluids and superconductors , 2003, cond-mat/0308034.

[105]  S. Simon,et al.  Monte Carlo evaluation of non-Abelian statistics. , 2002, Physical review letters.

[106]  A. Kitaev,et al.  Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[107]  P. Lecheminant,et al.  Criticality in self-dual sine-Gordon models , 2002, cond-mat/0203294.

[108]  M. Freedman,et al.  The Two-Eigenvalue Problem and Density¶of Jones Representation of Braid Groups , 2001, math/0103200.

[109]  I. Kukushkin Spin Polarization of Composite Fermions , 2001 .

[110]  D. Ivanov Non-Abelian statistics of half-quantum vortices in p-wave superconductors. , 2000, Physical review letters.

[111]  A. Kitaev Unpaired Majorana fermions in quantum wires , 2000, cond-mat/0010440.

[112]  Michael Larsen,et al.  A Modular Functor Which is Universal¶for Quantum Computation , 2000, quant-ph/0001108.

[113]  N. Read,et al.  Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect , 1999, cond-mat/9906453.

[114]  K. West,et al.  Exact Quantization of the Even-Denominator Fractional Quantum Hall State at ν = 5 / 2 Landau Level Filling Factor , 1999, cond-mat/9907356.

[115]  K. Klitzing,et al.  SPIN POLARIZATION OF COMPOSITE FERMIONS : MEASUREMENTS OF THE FERMI ENERGY , 1999 .

[116]  N. Read,et al.  Beyond paired quantum Hall states: parafermions and incompressible states in the first excited Landau level , 1998, cond-mat/9809384.

[117]  John Preskill,et al.  Topological Quantum Computation , 1998, QCQC.

[118]  M H Freedman,et al.  P/NP, and the quantum field computer , 1998, Proc. Natl. Acad. Sci. USA.

[119]  C. Nayak,et al.  A plasma analogy and Berry matrices for non-abelian quantum Hall states , 1997, cond-mat/9706227.

[120]  F. Wilczek,et al.  2n-quasihole states realize 2n−1-dimensional spinor braiding statistics in paired quantum Hall states , 1996, cond-mat/9605145.

[121]  Read,et al.  Edge excitations of paired fractional quantum Hall states. , 1996, Physical review. B, Condensed matter.

[122]  Fisher,et al.  Impurity scattering and transport of fractional quantum Hall edge states. , 1994, Physical review. B, Condensed matter.

[123]  Fisher,et al.  Randomness at the edge: Theory of quantum Hall transport at filling nu =2/3. , 1994, Physical review letters.

[124]  J. Preskill,et al.  Quantum field theory of non-abelian strings and vortices , 1991, hep-th/9112038.

[125]  V. Fateev,et al.  Integrable perturbations of ZN parafermion models and the O(3) sigma model , 1991 .

[126]  V. Yurov,et al.  Truncated fermionic space approach to the critical 2-D Ising model with magnetic field , 1991 .

[127]  Gregory W. Moore,et al.  Nonabelions in the fractional quantum Hall effect , 1991 .

[128]  V. Fateev INTEGRABLE DEFORMATIONS IN ZN-SYMMETRICAL MODELS OF THE CONFORMAL QUANTUM FIELD THEORY , 1991 .

[129]  F. Smirnov EXACT S-MATRICES FOR ϕ1,2-PERTURBATED MINIMAL MODELS OF CONFORMAL FIELD THEORY , 1991 .

[130]  F. Wilczek,et al.  Zero modes of non-abelian vortices , 1991 .

[131]  J. Cardy,et al.  The scaling region of the tricritical Ising model in two dimensions , 1991 .

[132]  F. Gabbiani,et al.  Braid statistics in local quantum theory , 1990 .

[133]  A. B. Zamolodchikov,et al.  Truncated conformal space approach to scaling Lee-Yang model , 1990 .

[134]  N. Reshetikhin,et al.  Hidden quantum group symmetry and integrable perturbations of conformal field theories , 1990 .

[135]  E. Sudarshan,et al.  Identical particles, exotic statistics and braid groups , 1990 .

[136]  Edward Witten,et al.  Quantum field theory and the Jones polynomial , 1989 .

[137]  G. Moore,et al.  Classical and quantum conformal field theory , 1989 .

[138]  Bert Schroer,et al.  Superselection sectors with braid group statistics and exchange algebras , 1989 .

[139]  G. Moore,et al.  Polynomial equations for rational conformal field theories , 1988 .

[140]  Tsui,et al.  Observation of an even-denominator quantum number in the fractional quantum Hall effect. , 1987, Physical review letters.

[141]  Kennedy,et al.  Rigorous results on valence-bond ground states in antiferromagnets. , 1987, Physical review letters.

[142]  J. Cardy,et al.  Perturbative Evaluation of the Conformal Anomaly at New Critical Points with Applications to Random Systems , 1987 .

[143]  V. Fateev,et al.  Conformal quantum field theory models in two dimensions having Z3 symmetry , 1987 .

[144]  J. Cardy Effect of boundary conditions on the operator content of two-dimensional conformally invariant theories , 1986 .

[145]  Alexander B. Zamolodchikov,et al.  Infinite additional symmetries in two-dimensional conformal quantum field theory , 1985 .

[146]  V. Fateev,et al.  Nonlocal (parafermion) currents in two-dimensional conformal quantum field theory and self-dual critical points in Z/sub N/-symmetric statistical systems , 1985 .

[147]  Sharp,et al.  Comments on "General theory for quantum statistics in two dimensions" , 1985, Physical review letters.

[148]  F. Haldane,et al.  Magnetic Flux of , 1984 .

[149]  D. C. Tsui,et al.  Two-Dimensional Magnetotransport in the Extreme Quantum Limit , 1982 .

[150]  Frank Wilczek,et al.  Magnetic flux, angular momentum, and statistics , 1982 .

[151]  Gerald A. Goldin,et al.  Representations of a local current algebra in nonsimply connected space and the Aharonov–Bohm effect , 1981 .

[152]  L. Kadanoff,et al.  Disorder variables and para-fermions in two-dimensional statistical mechanics , 1980 .

[153]  J. Myrheim,et al.  On the theory of identical particles , 1977 .

[154]  Alexei A. Maradudin Edge Modes , 1974 .

[155]  Elliott H Lieb,et al.  Relations between the ‘percolation’ and ‘colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ‘percolation’ problem , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.