Synchronization of Identical Linear Systems – an LMI Approach

Zusammenfassung Dieser Beitrag stellt ein neues Verfahren zur Synchronisierung identischer linearer Systeme vor, die über statische Kommunikationsnetzwerke verbunden sind. Dazu wird das Entwurfsproblem auf ein simultanes Stabilisierungsproblem zurückgeführt. Aus diesem werden dann neue notwendige und hinreichende Bedingungen für den Entwurf abgeleitet. Diese sind konstruktiv, so dass auf Basis linearer Matrixungleichungen, geeignete Rückführungen für Multi-Agenten-Systeme mit stabilisierbarer Dynamik und zusammenhängendem Kommunikationsnetzwerk entworfen werden können. Es wird gezeigt, dass dies sogar dann möglich ist, wenn die Agenten nur einen Teil ihrer Zustandsinformation austauschen dürfen. Abstract This article presents a new method for the synchronization of identical linear systems linked over static communication channels. Based on a transformation of the synchronization problem into a simultaneous stabilization problem novel and constructive necessary and sufficient conditions are obtained. By using linear matrix inequalities, appropriate feedback design is facilitated for all multi-agent systems with stabilizable dynamics and connected communication topologies. In addition to full-state coupling, synchronization is also achieved if only a part of the state of each agent is communicated over the network.

[1]  Ji-Feng Zhang,et al.  Necessary and Sufficient Conditions for Consensusability of Linear Multi-Agent Systems , 2010, IEEE Transactions on Automatic Control.

[2]  Frank Allgöwer,et al.  An internal model principle is necessary and sufficient for linear output synchronization , 2011, Autom..

[3]  Sezai Emre Tuna,et al.  Conditions for Synchronizability in Arrays of Coupled Linear Systems , 2008, IEEE Transactions on Automatic Control.

[4]  Wei Ren,et al.  Information consensus in multivehicle cooperative control , 2007, IEEE Control Systems.

[5]  P. Chebotarev,et al.  On of the Spectra of Nonsymmetric Laplacian Matrices , 2004, math/0508176.

[6]  Rodolphe Sepulchre,et al.  Synchronization in networks of identical linear systems , 2009, Autom..

[7]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[8]  H. Horisberger,et al.  Regulators for linear, time invariant plants with uncertain parameters , 1976 .

[9]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[10]  Fred C. Lee,et al.  Modeling of V2 Current-Mode Control , 2010, 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition.

[11]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[12]  Daizhan Cheng,et al.  Consensus of multi-agent linear dynamic systems† , 2008 .

[13]  Paul Pinsler Über das Vorkommen definiter und semidefiniter Formen in Scharen quadratischer Formen , 1936 .

[14]  A. Jadbabaie,et al.  Effects of Delay in Multi-Agent Consensus and Oscillator Synchronization , 2010, IEEE Transactions on Automatic Control.

[15]  Richard M. Murray,et al.  Information flow and cooperative control of vehicle formations , 2004, IEEE Transactions on Automatic Control.

[16]  Manfredi Maggiore,et al.  Necessary and sufficient graphical conditions for formation control of unicycles , 2005, IEEE Transactions on Automatic Control.

[17]  Hyungbo Shim,et al.  Consensus of high-order linear systems using dynamic output feedback compensator: Low gain approach , 2009, Autom..