Linearized inverse scattering problems in acoustics and elasticity

Abstract Using the single-scattering approximation we invert for the material parameters of an acoustic two-parameter medium and then for a three-parameter isotropic elastic medium. Our procedure is related to various methods of depth migration in seismics, i.e. methods for locating major discontinuities in the subsurface material without specifying which quantities are discontinuous or by how much they jump. Our asymptotic multiparameter inversion makes use of amplitude information to reconstruct the size of the jumps in the parameters describing the medium. We allow spatially varying background parameters (both vertically and laterally) and an almost arbitrary source-receiver configuration. The computation is performed in the time domain and we use all available data even if it is redundant. This ability to incorporate the redundant information in a natural way is based upon a formula for double integrals over spheres. We solve for perturbations in different parameters treating separately P-to-P, P-to-S, S-to-P, and S-to-S data. It turns out that one may invert using subsets of the data, or all of it together. We also describe modifications to our scheme which allow us to use the Kirchhoff instead of the Born approximation for the forward problem when the scatterers are smooth surfaces of discontinuity.

[1]  Gregory Beylkin,et al.  Wavefront sets of solutions to linearised inverse scattering problems , 1987 .

[2]  J. Hagedoorn,et al.  A process of seismic reflection interpretation , 1954 .

[3]  L. Johnson Some mathematical topics in seismology by Robert Burridge, Courant Institute of Mathematical Sciences, New York University, 317 pp, 1976, $9.75 , 1978 .

[4]  Mora Peter Nonlinear elastic inversion of multioffset seismic data , 1986 .

[5]  Joseph B. Keller,et al.  Inverse elastic scattering in three dimensions , 1986 .

[6]  Gregory Beylkin,et al.  Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform , 1985 .

[7]  N. Bleistein On the imaging of reflectors in the earth , 1987 .

[8]  Arthur B. Weglein,et al.  Migration and inversion of seismic data , 1985 .

[9]  Jack K. Cohen,et al.  An Inverse Method for Determining Small Variations in Propagation Speed , 1977 .

[10]  On double integrals over spheres , 1988 .

[11]  G Beylkin,et al.  Reconstructing discontinuities in multidimensional inverse scattering problems: smooth errors vs small errors. , 1985, Applied optics.

[12]  Density and compressibility profiles of a layered acoustic medium from precritical incidence data , 1981 .

[13]  Ru-Shan Wu,et al.  Scattering characteristics of elastic waves by an elastic heterogeneity , 1985 .

[14]  G. Beylkin,et al.  Multiparameter inversion for acoustic and elastic media , 1989 .

[15]  Gregory Beylkin,et al.  Spatial Resolution of Migration Algorithms , 1985 .

[16]  Inverse scattering for stratified elastic media , 1986 .

[17]  William S. French,et al.  TWO‐DIMENSIONAL AND THREE‐DIMENSIONAL MIGRATION OF MODEL‐EXPERIMENT REFLECTION PROFILES , 1974 .

[18]  G. Beylkin The inversion problem and applications of the generalized radon transform , 1984 .

[19]  Michael Oristaglio,et al.  A plane-wave decomposition for elastic wave fields applied to the separation of P-waves and S-waves In vector seismic data , 1986 .

[20]  William A. Schneider,et al.  INTEGRAL FORMULATION FOR MIGRATION IN TWO AND THREE DIMENSIONS , 1978 .

[21]  Gregory Beylkin,et al.  A new formalism and an old heuristic for seismic migration , 1984 .

[22]  P. Deift,et al.  Inverse scattering on the line , 1979 .

[23]  R. Stolt MIGRATION BY FOURIER TRANSFORM , 1978 .

[24]  I. Gel'fand,et al.  On the determination of a differential equation from its spectral function , 1955 .

[25]  A. J. Devaney Variable density acoustic tomography , 1985 .

[26]  R. Burridge,et al.  Energy Partition in the Reflection and Refraction of Plane Waves , 1978 .

[27]  L. Hörmander Fourier integral operators. I , 1995 .

[28]  William S. French,et al.  Computer migration of oblique seismic reflection profiles , 1975 .

[29]  Jack K. Cohen,et al.  Velocity inversion procedure for acoustic waves , 1979 .

[30]  Estimating Reservoir Mechanical Properties Using Constant Offset Images of Reflection Coefficients And Incident Angles , 1986 .

[31]  J. Claerbout Toward a unified theory of reflector mapping , 1971 .

[32]  Gregory Beylkin,et al.  A new slant on seismic imaging: Migration and integral geometry , 1987 .

[33]  Jon F. Claerbout,et al.  DOWNWARD CONTINUATION OF MOVEOUT‐CORRECTED SEISMOGRAMS , 1972 .

[34]  Robert W. Clayton,et al.  A Born-WKBJ inversion method for acoustic reflection data , 1981 .