Learnheuristics: hybridizing metaheuristics with machine learning for optimization with dynamic inputs

Abstract This paper reviews the existing literature on the combination of metaheuristics with machine learning methods and then introduces the concept of learnheuristics, a novel type of hybrid algorithms. Learnheuristics can be used to solve combinatorial optimization problems with dynamic inputs (COPDIs). In these COPDIs, the problem inputs (elements either located in the objective function or in the constraints set) are not fixed in advance as usual. On the contrary, they might vary in a predictable (non-random) way as the solution is partially built according to some heuristic-based iterative process. For instance, a consumer’s willingness to spend on a specific product might change as the availability of this product decreases and its price rises. Thus, these inputs might take different values depending on the current solution configuration. These variations in the inputs might require from a coordination between the learning mechanism and the metaheuristic algorithm: at each iteration, the learning method updates the inputs model used by the metaheuristic.

[1]  Huang Xi-yue Solving TSP with Characteristic of Clustering by Ant Colony Algorithm , 2004 .

[2]  M. Pelikán,et al.  The Bivariate Marginal Distribution Algorithm , 1999 .

[3]  Bidyut Baran Chaudhuri,et al.  A novel genetic algorithm for automatic clustering , 2004, Pattern Recognit. Lett..

[4]  Felix Dobslaw,et al.  A parameter-tuning framework for metaheuristics based on design of experiments and artificial neural networks , 2010 .

[5]  P. K. Nizar Banu,et al.  Gene Clustering Using Metaheuristic Optimization Algorithms , 2015, Int. J. Appl. Metaheuristic Comput..

[6]  Alex Alves Freitas,et al.  A Survey of Evolutionary Algorithms for Clustering , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[7]  El-Ghazali Talbi,et al.  Combining metaheuristics with mathematical programming, constraint programming and machine learning , 2016, Ann. Oper. Res..

[8]  F. Glover HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE CONSTRAINTS , 1977 .

[9]  Laetitia Vermeulen-Jourdan,et al.  Synergies between operations research and data mining: The emerging use of multi-objective approaches , 2012, Eur. J. Oper. Res..

[10]  Franz Aurenhammer,et al.  Evolution strategy and hierarchical clustering , 2002 .

[11]  Pedro Antonio Gutiérrez,et al.  Sensitivity Versus Accuracy in Multiclass Problems Using Memetic Pareto Evolutionary Neural Networks , 2010, IEEE Transactions on Neural Networks.

[12]  Carlos A. Coello Coello,et al.  Using Clustering Techniques to Improve the Performance of a Multi-objective Particle Swarm Optimizer , 2004, GECCO.

[13]  Sergio Escalera,et al.  Evolving weighting schemes for the Bag of Visual Words , 2017, Neural Computing and Applications.

[14]  Scott Kirkpatrick,et al.  Optimization by simulated annealing: Quantitative studies , 1984 .

[15]  Luiz Satoru Ochi,et al.  On Improving Evolutionary Algorithms by Using Data Mining for the Oil Collector Vehicle Routing Problem , 2003 .

[16]  Chi-Keong Goh,et al.  Computational Intelligence in Expensive Optimization Problems , 2010 .

[17]  Thomas Bartz-Beielstein,et al.  Design and Analysis of Optimization Algorithms Using Computational Statistics , 2004 .

[18]  David E. Goldberg,et al.  Linkage Problem, Distribution Estimation, and Bayesian Networks , 2000, Evolutionary Computation.

[19]  Olga Guschinskaya,et al.  Matheuristics - Hybridizing Metaheuristics and Mathematical Programming , 2010, Matheuristics.

[20]  LazaRosalía,et al.  Automatic parameter tuning with a Bayesian case-based reasoning system. A case of study , 2009 .

[21]  M. Resende,et al.  A probabilistic heuristic for a computationally difficult set covering problem , 1989 .

[22]  Mehmet Ali Cengiz,et al.  A Comparative Study on Bayesian Optimization Algorithm for Nutrition Problem , 2014 .

[23]  Antonio Candelieri,et al.  A hyper-solution framework for classification problems via metaheuristic approaches , 2011, 4OR.

[24]  Hoong Chuin Lau,et al.  Real-World Parameter Tuning using Factorial Design with Parameter Decomposition , 2013 .

[25]  Yaochu Jin,et al.  A comprehensive survey of fitness approximation in evolutionary computation , 2005, Soft Comput..

[26]  Patrick Siarry,et al.  A survey on optimization metaheuristics , 2013, Inf. Sci..

[27]  Alan S. Perelson,et al.  The immune system, adaptation, and machine learning , 1986 .

[28]  Yew-Soon Ong,et al.  A study on polynomial regression and Gaussian process global surrogate model in hierarchical surrogate-assisted evolutionary algorithm , 2005, 2005 IEEE Congress on Evolutionary Computation.

[29]  M. R. Lemes,et al.  Neural-network-assisted genetic algorithm applied to silicon clusters , 2003 .

[30]  José Pinto Paixão,et al.  Using clustering analysis in a capacitated location-routing problem , 2007, Eur. J. Oper. Res..

[31]  Tomonobu Senjyu,et al.  Fast technique for unit commitment by genetic algorithm based on unit clustering , 2005 .

[32]  Bernhard Sendhoff,et al.  Reducing Fitness Evaluations Using Clustering Techniques and Neural Network Ensembles , 2004, GECCO.

[33]  C.W. Anderson,et al.  Comparison of linear, nonlinear, and feature selection methods for EEG signal classification , 2003, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[34]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[35]  Andreas Zell,et al.  A Clustering Based Niching Method for Evolutionary Algorithms , 2003, GECCO.

[36]  Sushil J. Louis,et al.  Learning with case-injected genetic algorithms , 2004, IEEE Transactions on Evolutionary Computation.

[37]  Kate Smith-Miles,et al.  Artificial Neural Networks for Combinatorial Optimization , 2003, Handbook of Metaheuristics.

[38]  Angel A. Juan,et al.  On the use of Monte Carlo simulation, cache and splitting techniques to improve the Clarke and Wright savings heuristics , 2011, J. Oper. Res. Soc..

[39]  Ch. Y. Lee Reliability Optimization Desing Using Hybrid NN-GA with Fuzzy Logic Controller , 2002 .

[40]  Michel Gendreau,et al.  Hyper-heuristics: a survey of the state of the art , 2013, J. Oper. Res. Soc..

[41]  Qingfu Zhang,et al.  A surrogate-assisted evolutionary algorithm for minimax optimization , 2010, IEEE Congress on Evolutionary Computation.

[42]  Alexander Mendiburu,et al.  A review on estimation of distribution algorithms in permutation-based combinatorial optimization problems , 2012, Progress in Artificial Intelligence.

[43]  Angel A. Juan,et al.  A multi-agent based cooperative approach to scheduling and routing , 2016, Eur. J. Oper. Res..

[44]  Ramachandra Rao Kurada,et al.  A preliminary survey on optimized multiobjective metaheuristic methods for data clustering using evolutionary approaches , 2013, ArXiv.

[45]  Shumeet Baluja,et al.  A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning , 1994 .

[46]  Amit Konar,et al.  Metaheuristic Pattern Clustering – An Overview , 2009 .

[47]  Alexandre Plastino,et al.  Hybridization of GRASP Metaheuristic with Data Mining Techniques , 2006, J. Math. Model. Algorithms.

[48]  Q.H. Liu,et al.  Application of Support Vector Machines to Accelerate the Solution Speed of Metaheuristic Algorithms , 2009, IEEE Transactions on Magnetics.

[49]  Rommel G. Regis,et al.  Evolutionary Programming for High-Dimensional Constrained Expensive Black-Box Optimization Using Radial Basis Functions , 2014, IEEE Transactions on Evolutionary Computation.

[50]  Paul A. Viola,et al.  MIMIC: Finding Optima by Estimating Probability Densities , 1996, NIPS.

[51]  Graham Kendall,et al.  A Classification of Hyper-heuristic Approaches , 2010 .

[52]  Ivo Pereira,et al.  Tuning Meta-Heuristics Using Multi-agent Learning in a Scheduling System , 2013, Trans. Comput. Sci..

[53]  So-Youn Park,et al.  Improvement of a multi-objective differential evolution using clustering algorithm , 2009, 2009 IEEE International Symposium on Industrial Electronics.

[54]  Mitsuo Gen,et al.  Reliability Optimization Design Using a Hybridized Genetic Algorithm with a Neural-Network Technique , 2001 .

[55]  Kyung-Sup Kim,et al.  The efficient search method of simulated annealing using fuzzy logic controller , 2009, Expert Syst. Appl..

[56]  Laetitia Vermeulen-Jourdan,et al.  Preliminary Investigation of the 'Learnable Evolution Model' for Faster/Better Multiobjective Water Systems Design , 2005, EMO.

[57]  Clarisse Dhaenens,et al.  Combining evolutionary algorithms and exact approaches for multi-objective knowledge discovery , 2008, RAIRO Oper. Res..

[58]  Bernhard Sendhoff,et al.  Generalizing Surrogate-Assisted Evolutionary Computation , 2010, IEEE Transactions on Evolutionary Computation.

[59]  Mengjie Zhang,et al.  A Particle Swarm Optimisation Based Multi-objective Filter Approach to Feature Selection for Classification , 2012, PRICAI.

[60]  T. Yalcinoz,et al.  Power economic dispatch using a hybrid genetic algorithm , 2001 .

[61]  Risto Miikkulainen,et al.  Evolving Neural Networks through Augmenting Topologies , 2002, Evolutionary Computation.

[62]  Silvia Casado Yusta,et al.  Different metaheuristic strategies to solve the feature selection problem , 2009, Pattern Recognit. Lett..

[63]  Wilfrido Gómez-Flores,et al.  On the selection of surrogate models in evolutionary optimization algorithms , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[64]  Michel Gendreau,et al.  Handbook of Metaheuristics , 2010 .

[65]  Sung-Bae Cho,et al.  Partially Evaluated Genetic Algorithm Based on Fuzzy c-Means Algorithm , 2004, PPSN.

[66]  Magdalene Marinaki,et al.  A stochastic nature inspired metaheuristic for clustering analysis , 2008, Int. J. Bus. Intell. Data Min..

[67]  A. Sima Etaner-Uyar,et al.  A Hyper-Heuristic Approach for the Unit Commitment Problem , 2010, EvoApplications.

[68]  Edward W. Felten,et al.  Large-step markov chains for the TSP incorporating local search heuristics , 1992, Oper. Res. Lett..

[69]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  Using Meta-learning to Recommend Meta-heuristics for the Traveling Salesman Problem , 2011, 2011 10th International Conference on Machine Learning and Applications and Workshops.

[70]  Jin-Hua Zheng,et al.  Heuristic Evolutionary Approach for Weighted Circles Layout , 2010, ISIA.

[71]  David Barber,et al.  Bayesian reasoning and machine learning , 2012 .

[72]  Osamu Katai,et al.  A Novel Hybrid Framework of Coevolutionary GA and Machine Learning , 2002, Int. J. Comput. Intell. Appl..

[73]  Kate Smith-Miles,et al.  Towards objective measures of algorithm performance across instance space , 2014, Comput. Oper. Res..

[74]  M. Zennaki,et al.  A New Machine Learning based Approach for Tuning Metaheuristics for the Solution of Hard Combinatorial Optimization Problems , 2010 .

[75]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[76]  Ryszard S. Michalski,et al.  LEARNABLE EVOLUTION MODEL: Evolutionary Processes Guided by Machine Learning , 2004, Machine Learning.

[77]  Ian Griffin,et al.  A hybrid multi-objective evolutionary algorithm using an inverse neural network for aircraft control system design , 2005, 2005 IEEE Congress on Evolutionary Computation.

[78]  Gerrit K. Janssens,et al.  Data mining with genetic algorithms on binary trees , 2003, Eur. J. Oper. Res..

[79]  Heinz Mühlenbein,et al.  Schemata, Distributions and Graphical Models in Evolutionary Optimization , 1999, J. Heuristics.

[80]  Daniele Ferone,et al.  A new GRASP metaheuristic for biclustering of gene expression data , 2016, PeerJ Prepr..

[81]  Vive Kumar,et al.  Particle Swarm Optimization (PSO)-Based Clustering for Improving the Quality of Learning using Cloud Computing , 2013, 2013 IEEE 13th International Conference on Advanced Learning Technologies.

[82]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[83]  Ender Özcan,et al.  Improving performance of a hyper-heuristic using a multilayer perceptron for vehicle routing , 2015 .

[84]  David Salt,et al.  Instance-specific multi-objective parameter tuning based on fuzzy logic , 2012, Eur. J. Oper. Res..

[85]  António Gaspar-Cunha,et al.  A Hybrid Multi-Objective Evolutionary Algorithm Using an Inverse Neural Network , 2004, Hybrid Metaheuristics.

[86]  Anne Auger,et al.  Performance evaluation of an advanced local search evolutionary algorithm , 2005, 2005 IEEE Congress on Evolutionary Computation.

[87]  Jun Zhang,et al.  Evolutionary Computation Meets Machine Learning: A Survey , 2011, IEEE Computational Intelligence Magazine.

[88]  R. Geoff Dromey,et al.  An algorithm for the selection problem , 1986, Softw. Pract. Exp..

[89]  El-Ghazali Talbi,et al.  Using Datamining Techniques to Help Metaheuristics: A Short Survey , 2006, Hybrid Metaheuristics.

[90]  Shahriar Asta Machine learning for improving heuristic optimisation , 2015 .

[91]  Adrião Duarte Dória Neto,et al.  Logistic regression for parameter tuning on an evolutionary algorithm , 2005, 2005 IEEE Congress on Evolutionary Computation.

[92]  Kate Smith-Miles,et al.  Towards insightful algorithm selection for optimisation using meta-learning concepts , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[93]  Stefan Lessmann,et al.  Tuning metaheuristics: A data mining based approach for particle swarm optimization , 2011, Expert Syst. Appl..

[94]  Adrião Duarte Dória Neto,et al.  Using the Q-learning algorithm in the constructive phase of the GRASP and reactive GRASP metaheuristics , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[95]  J. Hunger,et al.  Optimization and analysis of force field parameters by combination of genetic algorithms and neural networks , 1999, J. Comput. Chem..

[96]  X. Yao Evolving Artificial Neural Networks , 1999 .

[97]  Lawrence W. Lan,et al.  Genetic clustering algorithms , 2001, Eur. J. Oper. Res..

[98]  Alex Alves Freitas A Review of evolutionary Algorithms for Data Mining , 2008, Soft Computing for Knowledge Discovery and Data Mining.

[99]  Abhijit Ghatak,et al.  Machine Learning with R , 2017, Springer Singapore.

[100]  B. Kulkarni,et al.  An ant colony approach for clustering , 2004 .

[101]  Sanjay Srivastava,et al.  Neural network embedded multiobjective genetic algorithm to solve non-linear time-cost tradeoff problems of project scheduling , 2008 .

[102]  Hugo Terashima-Marín,et al.  A Supervised Learning Approach to Construct Hyper-heuristics for Constraint Satisfaction , 2013, MCPR.

[103]  Shokri Z. Selim,et al.  A simulated annealing algorithm for the clustering problem , 1991, Pattern Recognit..

[104]  Kate Smith-Miles,et al.  Neural Networks for Combinatorial Optimization: A Review of More Than a Decade of Research , 1999, INFORMS J. Comput..

[105]  John H. Holland,et al.  Outline for a Logical Theory of Adaptive Systems , 1962, JACM.

[106]  Julian Francis Miller,et al.  NeuroEvolution: Evolving Heterogeneous Artificial Neural Networks , 2014, Evolutionary Intelligence.

[107]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[108]  Dr. Alex A. Freitas Data Mining and Knowledge Discovery with Evolutionary Algorithms , 2002, Natural Computing Series.

[109]  David E. Goldberg,et al.  The compact genetic algorithm , 1999, IEEE Trans. Evol. Comput..

[110]  Enrique Alba,et al.  Sensitivity and specificity based multiobjective approach for feature selection: Application to cancer diagnosis , 2009, Inf. Process. Lett..

[111]  Angel A. Juan,et al.  A review of simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems , 2015 .

[112]  Shengxiang Yang,et al.  Metaheuristics for dynamic combinatorial optimization problems. , 2013 .

[113]  Xin Yao,et al.  Estimation of the Distribution Algorithm With a Stochastic Local Search for Uncertain Capacitated Arc Routing Problems , 2016, IEEE Transactions on Evolutionary Computation.

[114]  David E. Goldberg,et al.  A Survey of Optimization by Building and Using Probabilistic Models , 2002, Comput. Optim. Appl..

[115]  Ender Özcan,et al.  An apprenticeship learning hyper-heuristic for vehicle routing in HyFlex , 2014, 2014 IEEE Symposium on Evolving and Autonomous Learning Systems (EALS).

[116]  Kenneth Sörensen,et al.  Metaheuristics - the metaphor exposed , 2015, Int. Trans. Oper. Res..

[117]  Angel A. Juan,et al.  Rich Vehicle Routing Problem , 2014, ACM Comput. Surv..

[118]  Yuping Wang,et al.  An orthogonal genetic algorithm with quantization for global numerical optimization , 2001, IEEE Trans. Evol. Comput..

[119]  Kenneth DeJong,et al.  Parameter Setting in EAs: a 30 Year Perspective , 2007, Parameter Setting in Evolutionary Algorithms.

[120]  John J. Grefenstette,et al.  Case-Based Initialization of Genetic Algorithms , 1993, ICGA.

[121]  Deborah R. Carvalho,et al.  A genetic-algorithm for discovering small-disjunct rules in data mining , 2002, Appl. Soft Comput..

[122]  Fernando M. Ramos,et al.  Metaheuristics for the feedforward artificial neural network (ANN) architecture optimization problem , 2011, Neural Computing and Applications.

[123]  Haym Hirsh,et al.  Informed operators: Speeding up genetic-algorithm-based design optimization using reduced models , 2000, GECCO.

[124]  M. A. Adibi,et al.  A clustering-based modified variable neighborhood search algorithm for a dynamic job shop scheduling problem , 2013, The International Journal of Advanced Manufacturing Technology.

[125]  Lúcia Maria de A. Drummond,et al.  Combining an evolutionary algorithm with data mining to solve a single-vehicle routing problem , 2006, Neurocomputing.

[126]  Mauro Brunato,et al.  Reactive Search Optimization: Learning While Optimizing , 2018, Handbook of Metaheuristics.

[127]  María José del Jesús,et al.  Niching genetic feature selection algorithms applied to the design of fuzzy rule-based classification systems , 2007, 2007 IEEE International Fuzzy Systems Conference.

[128]  Peter I. Cowling,et al.  Mining the data from a hyperheuristic approach using associative classification , 2008, Expert Syst. Appl..

[129]  M. E. Stevens Selected pattern recognition projects in Europe , 1968, Pattern Recognit..

[130]  Craig A. Knoblock,et al.  A Survey of Digital Map Processing Techniques , 2014, ACM Comput. Surv..

[131]  Alexandre Plastino,et al.  Applications of the DM-GRASP heuristic: a survey , 2008, Int. Trans. Oper. Res..

[132]  Marco Caserta,et al.  A cross entropy-Lagrangean hybrid algorithm for the multi-item capacitated lot-sizing problem with setup times , 2009, Comput. Oper. Res..

[133]  Jalel Euchi,et al.  Hybrid estimation of distribution algorithm for a multiple trips fixed fleet vehicle routing problems with time windows , 2014 .

[134]  Sushil J. Louis,et al.  Genetic learning from experience , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[135]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[136]  I ScottKirkpatrick Optimization by Simulated Annealing: Quantitative Studies , 1984 .

[137]  John A. W. McCall,et al.  Using a Markov network as a surrogate fitness function in a genetic algorithm , 2010, IEEE Congress on Evolutionary Computation.

[138]  Laura Calvet,et al.  Combining statistical learning with metaheuristics for the Multi-Depot Vehicle Routing Problem with market segmentation , 2016, Comput. Ind. Eng..

[139]  Kien A. Hua,et al.  Decision tree classifier for network intrusion detection with GA-based feature selection , 2005, ACM Southeast Regional Conference.

[140]  Edmund K. Burke,et al.  Integrating neural networks and logistic regression to underpin hyper-heuristic search , 2011, Knowl. Based Syst..

[141]  Clarisse Dhaenens,et al.  A multicriteria genetic algorithm to analyze microarray data , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[142]  Alexandre Plastino,et al.  A Hybrid GRASP with Data Mining for the Maximum Diversity Problem , 2005, Hybrid Metaheuristics.

[143]  ZhangJun,et al.  Evolutionary Computation Meets Machine Learning , 2011 .

[144]  G. Harik Linkage Learning via Probabilistic Modeling in the ECGA , 1999 .

[145]  Sanja Petrovic,et al.  Case-based heuristic selection for timetabling problems , 2006, J. Sched..

[146]  Fernando Díaz,et al.  Automatic parameter tuning with a Bayesian case-based reasoning system. A case of study , 2009, Expert Syst. Appl..

[147]  G. Clarke,et al.  Scheduling of Vehicles from a Central Depot to a Number of Delivery Points , 1964 .

[148]  M. Carmen Garrido,et al.  Using machine learning in a cooperative hybrid parallel strategy of metaheuristics , 2009, Inf. Sci..

[149]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[150]  Ender Özcan,et al.  A tensor based hyper-heuristic for nurse rostering , 2016, Knowl. Based Syst..

[151]  Cheng-Lung Huang,et al.  A GA-based feature selection and parameters optimizationfor support vector machines , 2006, Expert Syst. Appl..

[152]  Aurora Trinidad Ramirez Pozo,et al.  Multiobjective Optimization and Rule Learning: Subselection Algorithm or Meta-heuristic Algorithm? , 2009, Innovative Applications in Data Mining.

[153]  Clarisse Dhaenens,et al.  Metaheuristics for Big Data , 2016 .

[154]  Kate Smith-Miles,et al.  Cross-disciplinary perspectives on meta-learning for algorithm selection , 2009, CSUR.