Model catalysts: from imagining to imaging a working surface

[1]  D. Goodman,et al.  Isocyanate formation in the catalytic reaction of CO + NO on Pd(111): an in situ infrared spectroscopic study at elevated pressures. , 2002, Journal of the American Chemical Society.

[2]  A. Datye,et al.  CO Oxidation on Supported Nano-Au Catalysts Synthesized from a [Au6(PPh3)6](BF4)2 Complex , 2002 .

[3]  H. Freund Clusters and islands on oxides: from catalysis via electronics and magnetism to optics , 2002 .

[4]  D. Meier,et al.  Ru3(CO)12 Adsorption and Decomposition on TiO2 , 2002 .

[5]  Masatake Haruta,et al.  Advances in the catalysis of Au nanoparticles , 2001 .

[6]  M. El-Sayed,et al.  Shape Dependent Ultrafast Relaxation Dynamics of CdSe Nanocrystals: Nanorods vs Nanodots , 2001 .

[7]  D. Goodman,et al.  Modeling heterogeneous catalysts: metal clusters on planar oxide supports , 2000 .

[8]  D. Goodman,et al.  Imaging gold clusters on TiO2(110) at elevated pressures and temperatures , 2000 .

[9]  D. Goodman,et al.  Structure-reactivity correlations for oxide-supported metal catalysts: new perspectives from STM , 2000 .

[10]  D. Goodman,et al.  Imaging ultrathin Al2O3 films with scanning tunneling microscopy , 2000 .

[11]  Dellwig,et al.  Bridging the pressure and materials gaps: high pressure sum frequency generation study on supported Pd nanoparticles , 2000, Physical review letters.

[12]  D. Goodman,et al.  Structural and electronic properties of Au on TiO{sub 2}(110) , 2000 .

[13]  Hannu Häkkinen,et al.  When Gold Is Not Noble: Nanoscale Gold Catalysts , 1999 .

[14]  D. Goodman,et al.  Titanium oxide films grown on Mo(110) , 1999 .

[15]  S. C. Parker,et al.  Oxygen adsorption on well-defined gold particles on TiO2(110) , 1999 .

[16]  D. Goodman,et al.  Structure sensitivity of CO oxidation over model Au/TiO22 catalysts , 1998 .

[17]  D. Goodman,et al.  Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties , 1998, Science.

[18]  D. Goodman,et al.  Scanning tunneling microscopy studies of metal clusters supported on TiO2 (110): Morphology and electronic structure , 1998 .

[19]  D. Goodman,et al.  Metal clusters on ultrathin oxide films: model catalysts for surface science studies , 1998 .

[20]  D. Goodman,et al.  CO + O2 and CO + NO Reactions over Pd/Al2O3 Catalysts , 1997 .

[21]  G. Somorjai New model catalysts (platinum nanoparticles) and new techniques (SFG and STM) for studies of reaction intermediates and surface restructuring at high pressures during catalytic reactions , 1997 .

[22]  D. Goodman,et al.  Pd, Cu, and Au particles on Al2O3 thin films: An infrared reflection absorption spectroscopy study of monometallic and bimetallic planar model supported catalysts , 1997 .

[23]  D. Goodman,et al.  CHARACTERIZATION OF METAL CLUSTERS (PD AND AU) SUPPORTED ON VARIOUS METAL OXIDE SURFACES (MGO AND TIO2) , 1997 .

[24]  D. Goodman,et al.  Preparation and characterization of epitaxial titanium oxide films on Mo(100) , 1997 .

[25]  D. Goodman,et al.  The CO+NO Reaction over Pd: A Combined Study Using Single-Crystal, Planar-Model-Supported, and High-Surface-Area Pd/Al2O3Catalysts , 1997 .

[26]  Janos H. Fendler,et al.  Self-Assembled Nanostructured Materials , 1996 .

[27]  D. Goodman Chemical and spectroscopic studies of metal oxide surfaces , 1996 .

[28]  D. Goodman,et al.  BASIS FOR THE STRUCTURE SENSITIVITY OF THE CO+NO REACTION ON PALLADIUM , 1996 .

[29]  D. Goodman,et al.  Preparation and characterization of ultra-thin iron oxide films on a Mo(100) surface , 1995 .

[30]  D. Goodman,et al.  Evidence for structure sensitivity in the high pressure CO+NO reaction over Pd(111) and Pd(100) , 1995 .

[31]  D. Goodman Model Catalysts: from Extended Single Crystals to Supported Particles , 1995 .

[32]  D. Goodman,et al.  Particulate Cu on Ordered Al2O3: Reactions with Nitric Oxide and Carbon Monoxide , 1994 .

[33]  D. Goodman,et al.  Structural and catalytic properties of model silica- supported palladium catalysts: a comparison to single crystal surfaces , 1994 .

[34]  D. Goodman,et al.  Epitaxial growth of ultrathin Al2O3 films on Ta(110) , 1994 .

[35]  D. Goodman,et al.  XPS characterization of ultra-thin MgO films on a Mo(100) surface , 1994 .

[36]  D. Goodman,et al.  CO adsorption on Pd(111) and Pd(100): Low and high pressure correlations , 1993 .

[37]  C. Truong,et al.  Adsorption of formaldehyde on nickel oxide studied by thermal programmed desorption and high-resolution electron energy loss spectroscopy , 1993 .

[38]  C. Truong,et al.  Interactions of Ammonia with a NiO( 100) Surface Studied by High-Resolution Electron Energy Loss Spectroscopy and Temperature Programmed Desorption Spectroscopy , 1993 .

[39]  D. Goodman,et al.  The preparation and characterization of ultra-thin silicon dioxide films on a Mo(110) surface , 1993 .

[40]  D. Goodman,et al.  Structural and chemisorptive properties of model catalysts: copper supported on silica thin films , 1993 .

[41]  C. Truong,et al.  Adsorption and reaction of formic acid on NiO(100) films on Mo(100): Temperature programmed desorption and high resolution electron energy loss spectroscopy studies , 1992 .

[42]  D. W. Goodman,et al.  X-ray photoelectron spectroscopic characterization of ultra-thin silicon oxide films on a Mo(100) surface , 1992 .

[43]  D. Goodman,et al.  Infrared Reflection-Absorption Spectroscopy and STM Studies of Model Silica-Supported Copper Catalysts , 1992, Science.

[44]  D. Goodman,et al.  New approach to the preparation of ultrathin silicon dioxide films at low temperatures , 1992 .

[45]  D. Goodman,et al.  The Nature of the Metal-Metal Bond in Bimetallic Surfaces , 1992, Science.

[46]  C. A. Estrada,et al.  Preparation, characterization, and chemical properties of ultrathin MgO films on Mo(100) , 1992 .

[47]  C. A. Estrada,et al.  Model surface studies of metal oxides : adsorption of water and methanol on ultrathin MgO films on Mo(100) , 1992 .

[48]  D. Goodman Structure/reactivity relationships for alkane dissociation and Hydrogenolysis using single crystal kinetics , 1992 .

[49]  B. Cho Chemical modification of catalyst support for enhancement of transient catalytic activity: nitric oxide reduction by carbon monoxide over rhodium , 1991 .

[50]  C. A. Estrada,et al.  Synthesis and characterization of ultra-thin MgO films on Mo(100) , 1991 .

[51]  S. Oh,et al.  Influence of metal particle size and support on the catalytic properties of supported rhodium: CO$z.sbnd;O2 and CO$z.sbnd;NO reactions , 1991 .

[52]  A. Henglein,et al.  Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles , 1989 .

[53]  D. Goodman,et al.  Chemisorption of ultrathin Pd layers on W(110) and W(100): a dsorption of H2 and CO , 1988 .

[54]  C. Peden,et al.  Kinetics of CO oxidation on single-crystal Pd, Pt, and Ir , 1988 .

[55]  D. Goodman CATALYTIC STUDIES WITH METAL SINGLE CRYSTALS , 1987 .

[56]  D. Wayne Goodman,et al.  Model catalytic studies over metal single crystals , 1984 .

[57]  Charles T. Campbell,et al.  Model studies of ethylene epoxidation catalyzed by the Ag(110) surface , 1984 .

[58]  J. Küppers,et al.  Evaluation of flash desorption spectra , 1984 .

[59]  D. Goodman,et al.  Ethane hydrogenolysis over single crystals of nickel: Direct detection of structure sensitivity , 1982 .

[60]  D. Goodman,et al.  Modification of chemisorption properties by electronegative adatoms: H2 and CO on chlorided, sulfided, and phosphided Ni(100) , 1981 .

[61]  J. Yates,et al.  Kinetics of the hydrogenation of CO over a single crystal nickel catalyst , 1980 .

[62]  G. Martin Influence of the surface structure on the kinetics of ethane hydrogenolysis over Ni/SiO2 catalysts , 1979 .

[63]  M. Vannice CATALYTIC SYNTHESIS OF HYDROCARBONS FROM CARBON MONOXIDE AND HYDROGEN , 1977 .

[64]  M. Vannice The catalytic synthesis of hydrocarbons from H2CO mixtures over the group VIII metals: IV. The kinetic behavior of CO hydrogenation over Ni catalysts , 1976 .

[65]  F. Cyrot-Lackmann,et al.  On the asphericity of d electron clouds near transition metal surfaces , 1976 .

[66]  G. Somorjai,et al.  The hydrogenolysis of cyclopropane on a platinum stepped single crystal at atmospheric pressure , 1974 .

[67]  J. L. Carter,et al.  Catalysis over Supported Metals. V. The Effect of Crystallite Size on the Catalytic Activity of Nickel , 1966 .

[68]  D. Goodman,et al.  Oxygen-induced morphological changes of Ag nanoclusters supported on TiO2(110) , 1999 .

[69]  Claude R. Henry,et al.  Surface studies of supported model catalysts , 1998 .

[70]  Charles T. Campbell,et al.  Ultrathin metal films and particles on oxide surfaces: structural, electronic and chemisorptive properties , 1997 .

[71]  G. Somorjai,et al.  Surface Science Approach to Modeling Supported Catalysts , 1997 .

[72]  G. Beitel,et al.  Polarization Modulation Infrared Reflection Absorption Spectroscopy of CO Adsorption on Co(0001) under a High-Pressure Regime , 1996 .

[73]  D. Goodman,et al.  Local electronic structure of metal particles on metal oxide surfaces: Ni on alumina , 1996 .

[74]  D. Goodman,et al.  Structural and Catalytic Properties of Model Supported Nickel Catalysts , 1994 .

[75]  C. Truong,et al.  CO adsorption isotherms on Cu(100) at elevated pressures and temperatures using infrared reflection absorption spectroscopy , 1992 .

[76]  Faraday Discuss , 1985 .

[77]  H. J. Krebs,et al.  On the chemical nature of the carbonaceous deposits on iron after Co hydrogenation , 1980 .