Stem production, light absorption and light use efficiency between dominant and non-dominant trees of Eucalyptus grandis across a productivity gradient in Brazil

[1]  C. Beadle,et al.  Effect of thinning, pruning and nitrogen fertiliser application on light interception and light-use efficiency in a young Eucalyptus nitens plantation , 2013 .

[2]  H. L. Allen,et al.  Fertilization and irrigation effects on tree level aboveground net primary production, light interception and light use efficiency in a loblolly pine plantation , 2013 .

[3]  G. Maire,et al.  Tree and stand light use efficiencies over a full rotation of single- and mixed-species Eucalyptus grandis and Acacia mangium plantations , 2013 .

[4]  D. Binkley,et al.  Leaf area and light use efficiency patterns of Norway spruce under different thinning regimes and age classes , 2013, Forest ecology and management.

[5]  Dan Binkley,et al.  Light absorption and use efficiency in forests: Why patterns differ for trees and stands , 2013 .

[6]  Y. Nouvellon,et al.  Stand-level patterns of carbon fluxes and partitioning in a Eucalyptus grandis plantation across a gradient of productivity, in Sao Paulo State, Brazil. , 2012, Tree physiology.

[7]  O. C. Campoe Ecologia da produção e da competição intra-específica do Eucalyptus grandis ao longo de um gradiente de produtividade no estado de São Paulo , 2012 .

[8]  Escola Superior de Agricultura,et al.  Ecologia da produção e da competição intra-específica do Eucalyptus grandis ao longo de um gradiente de produtividade no Estado de São Paulo , 2012 .

[9]  Y. Nouvellon,et al.  Functional specialization of Eucalyptus fine roots: contrasting potential uptake rates for nitrogen, potassium and calcium tracers at varying soil depths , 2011 .

[10]  Michael J. Aspinwall,et al.  Genetic effects on stand-level uniformity and above- and belowground dry mass production in juvenile loblolly pine , 2011 .

[11]  José Leonardo de Moraes Gonçalves,et al.  Almost symmetrical vertical growth rates above and below ground in one of the world's most productive forests , 2011 .

[12]  W. Verhoef,et al.  Leaf area index estimation with MODIS reflectance time series and model inversion during full rotations of Eucalyptus plantations , 2011 .

[13]  M. Battaglia,et al.  Seasonal patterns of foliage respiration in dominant and suppressed Eucalyptus globulus canopies. , 2010, Tree physiology.

[14]  M. G. Ryan,et al.  Explaining growth of individual trees: Light interception and efficiency of light use by Eucalyptus at four sites in Brazil , 2010 .

[15]  M. G. Ryan,et al.  The Brazil Eucalyptus Potential Productivity Project: Influence of water, nutrients and stand uniformity on wood production , 2010 .

[16]  M. G. Ryan,et al.  Factors controlling Eucalyptus productivity: How water availability and stand structure alter production and carbon allocation , 2010 .

[17]  Laurent Saint-André,et al.  Within-stand and seasonal variations of specific leaf area in a clonal Eucalyptus plantation in the Republic of Congo , 2010 .

[18]  Does reverse growth dominance develop in old plantations of Eucalyptus saligna , 2010 .

[19]  J. Stape,et al.  Competition among eucalyptus trees depends on genetic variation and resource supply. , 2008, Ecology.

[20]  J. Stape,et al.  Assessing the effects of early silvicultural management on long-term site productivity of fast-growing eucalypt plantations: the Brazilian experience , 2008 .

[21]  Michael G. Ryan,et al.  Production and carbon allocation in a clonal Eucalyptus plantation with water and nutrient manipulations , 2008 .

[22]  D. Hodáňová An introduction to environmental biophysics , 1979, Biologia Plantarum.

[23]  Laurent Saint-André,et al.  Age-related equations for above- and below-ground biomass of a Eucalyptus hybrid in Congo , 2005 .

[24]  P. Smethurst,et al.  Silvicultural effects on the productivity and wood quality of eucalypt plantations , 2004 .

[25]  M. G. Ryan,et al.  Thinking about efficiency of resource use in forests , 2004 .

[26]  Joseph D. Bowden,et al.  Modeling intra-crown and intra-canopy interactions in red maple: assessment of light transfer on carbon dioxide and water vapor exchange. , 2004, Tree physiology.

[27]  John Moncrieff,et al.  Forests at the Land–Atmosphere Interface , 2003 .

[28]  C. Giardina,et al.  Primary production and carbon allocation in relation to nutrient supply in a tropical experimental forest , 2003 .

[29]  H. L. Allen,et al.  Short- and long-term effects of site preparation, fertilization and vegetation control on growth and stand development of planted loblolly pine , 2003 .

[30]  C. Tucker,et al.  Northern hemisphere photosynthetic trends 1982–99 , 2003 .

[31]  M. G. Ryan,et al.  Age-related Decline in Forest Ecosystem Growth: An Individual-Tree, Stand-Structure Hypothesis , 2002, Ecosystems.

[32]  Paul G. Jarvis,et al.  Description and validation of an array model - MAESTRO. , 1990 .

[33]  M. Cannell Physiological basis of wood production: A review , 1989 .

[34]  J. Norman,et al.  Radiative Transfer in an Array of Canopies1 , 1983 .

[35]  B. Barfield,et al.  Modification of the aerial environment of plants , 1979 .

[36]  G. Campbell,et al.  An Introduction to Environmental Biophysics , 1977 .

[37]  佐藤 大七郎,et al.  Forest Ecology and Management , 1999 .