Features of Dynamics and Instability of Plasma Jets Expanding into an External Magnetic Field in Laboratory Experiments with Compact Coaxial Plasma Generators on a Large-Scale “Krot” Stand

[1]  X. Ribeyre,et al.  Particle energization in colliding subcritical collisionless shocks investigated in the laboratory , 2022, Astronomy & Astrophysics.

[2]  Y. Zakharov,et al.  On the opportunity of Laser Plasma simulation of Plasma Jets formation in moderate magnetic fields ∼ kGs , 2021, Journal of Physics: Conference Series.

[3]  A. Soloviev,et al.  Laboratory modelling of equatorial 'tongue' accretion channels in young stellar objects caused by the Rayleigh-Taylor instability , 2021, Astronomy & Astrophysics.

[4]  E. Khazanov,et al.  Experimental Study of the Interaction of a Laser Plasma Flow with a Transverse Magnetic Field , 2021, Radiophysics and Quantum Electronics.

[5]  E. Khazanov,et al.  Inferring possible magnetic field strength of accreting inflows in EXor-type objects from scaled laboratory experiments , 2021, Astronomy & Astrophysics.

[6]  V. A. Miller,et al.  Dynamic formation of stable current-driven plasma jets , 2019, Scientific Reports.

[7]  D. Ryutov Scaling laws for dynamical plasma phenomena , 2018, Physics of Plasmas.

[8]  W. Gekelman,et al.  Collisionless coupling of a high- β expansion to an ambient, magnetized plasma. II. Experimental fields and measured momentum coupling , 2018 .

[9]  M. Gilmore,et al.  Experimental investigation of coaxial-gun-formed plasmas injected into a background transverse magnetic field or plasma , 2017, 1712.05829.

[10]  Cambridge,et al.  Redshifted X-rays from the material accreting onto TW Hya: evidence of a low-latitude accretion spot , 2017, 1708.03158.

[11]  A. Paola,et al.  The 2015–2016 Outburst of the Classical EXor V1118 Ori , 2017, 1704.05777.

[12]  S. A. Pikuz,et al.  Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field , 2014, Science.

[13]  G. Peres,et al.  Mass accretion to young stars triggered by flaring activity in circumstellar discs , 2011, 1104.5107.

[14]  P. Hartigan,et al.  Magnetic Fields in Stellar Jets , 2007, astro-ph/0702174.

[15]  R. Winglee,et al.  Collimation of a Central Wind by a Disk-Associated Magnetic Field , 2002, astro-ph/0212291.

[16]  A. V. Koldoba,et al.  Magnetohydrodynamic Simulations of Disk-Magnetized Star Interactions in the Quiescent Regime: Funnel Flows and Angular Momentum Transport , 2002, astro-ph/0209426.

[17]  Bruce A. Remington,et al.  Magnetohydrodynamic scaling: From astrophysics to the laboratory* , 2001 .

[18]  M. Livio,et al.  Episodic accretion in magnetically layered protoplanetary discs , 2001, astro-ph/0101253.

[19]  R. P. Drake,et al.  Similarity Criteria for the Laboratory Simulation of Supernova Hydrodynamics , 1999 .

[20]  H. Spruit,et al.  Collimation of magnetically driven jets from accretion discs , 1997 .

[21]  P. Hartigan,et al.  The Bow Shock and Mach Disk of HH 34 , 1992 .

[22]  W. Gekelman,et al.  Laser-plasma diamagnetism in the presence of an ambient magnetized plasma , 2004 .

[23]  T. Ray,et al.  Large-scale magnetic fields in the outflow from the young stellar object T Tauri S , 1997, Nature.

[24]  H. Friedman,et al.  MOMENTUM TRANSFER IN PLASMA FLOWS AT HIGH ALFVEN MACH NUMBERS. , 1971 .

[25]  J. Marshall,et al.  Performance of a Hydromagnetic Plasma Gun , 1960 .