ABAB homoleptic bis(phthalocyaninato)lanthanide(III) complexes: original octupolar design leading to giant quadratic hyperpolarizability.

The octupolar cube, a Td symmetry cube presenting alternating charges at its corners, is the generic point charge template of any octupolar molecule. So far, transposition into real molecular structures has yet to be achieved. We report here a first step toward the elaboration of fully cubic octupolar architectures. A series of octupolar bis(2,3,16,17-tetra(hexylthio)phthalocyaninato)lanthanide double-decker complexes [Pc2Ln], Ln = Nd (1), Eu (2), Dy (3), Y (4), and Lu (5), are described, whose original three-dimensional structures display the required alternation of ABAB type for one face of the cube and the delocalization between the two rings approximating to the electronic interaction along the edges of the cube. Synthesis, X-ray crystal structure, and study of the optical properties and of the first molecular hyperpolarizability β are reported. The size of the lanthanide (III) central ion modulates the ring-to-ring distance and the degree of coupling between the two phthalocyanine rings. As a consequence, the optical properties of these octupolar chromophores and in particular the strong near-infrared absorption due to the intervalence transition between the two rings also depend on the central lanthanide (III) ion. The first oxidized and reduced states of the complexes, while keeping a similar octupolar structure, display considerably changed optical properties compared to the neutral states. Second-order nonlinear properties were determined by nonpolarized harmonic light scattering in solution at 1907 nm. Exceptionally large dynamic molecular first hyperpolarizabilities √(1907), among the highest ever reported, were found that showed a strong dependence on the number of 4f electrons.

[1]  K. Clays,et al.  Linear and Nonlinear Optical Properties of Ramified Hexaazatriphenylenes: Charge Transfer Contributions to the Octupolar Response , 2013 .

[2]  J. Veciana,et al.  Novel double-decker phthalocyaninato terbium(III) single molecule magnets with stabilised redox states. , 2012, Dalton transactions.

[3]  J. Zyss,et al.  ABAB homoleptic bis(phthalocyaninato)lutetium(III) complex: toward the real octupolar cube and giant quadratic hyperpolarizability. , 2012, Journal of the American Chemical Society.

[4]  Anu Singh,et al.  Donor-substituted triaryl-1,3,5-triazinanes-2,4,6-triones: octupolar NLO-phores with a remarkable transparency–nonlinearity trade-off , 2011 .

[5]  Louise E. Sinks,et al.  The roles of molecular structure and effective optical symmetry in evolving dipolar chromophoric building blocks to potent octopolar nonlinear optical chromophores. , 2011, Journal of the American Chemical Society.

[6]  M. Yamashita,et al.  Surface morphologies, electronic structures, and Kondo effect of lanthanide(III)-phthalocyanine molecules on Au(111) by using STM, STS and FET properties for next generation devices. , 2010, Dalton transactions.

[7]  K. Clays,et al.  Synthesis and nonlinear optical properties of tetrahedral octupolar phthalocyanine-based systems. , 2010, The journal of physical chemistry. B.

[8]  I. Fragalà,et al.  Fluorinated beta-diketonate diglyme lanthanide complexes as new second-order nonlinear optical chromophores: the role of f electrons in the dipolar and octupolar contribution to quadratic hyperpolarizability. , 2010, Journal of the American Chemical Society.

[9]  Hwan Myung Kim,et al.  Second-order nonlinear optical properties of octupolar molecules structure–property relationship , 2009 .

[10]  Yuexing Zhang,et al.  Mixed (phthalocyaninato)(porphyrinato) rare earth double-decker complexes with C4 chirality: synthesis, resolution, and absolute configuration assignment. , 2009, Inorganic chemistry.

[11]  E. Furet,et al.  On the sensitivity of f electrons to their chemical environment. , 2008, Journal of the American Chemical Society.

[12]  Gulliver T. Dalton,et al.  Nonlinear optical and two-photon absorption properties of octupolar tris(bipyridyl)metal complexes. , 2007, The journal of physical chemistry. A.

[13]  S. Takamatsu,et al.  A theoretical study of a drastic structural change of bis(phthalocyaninato)lanthanide by ligand oxidation: Towards control of ligand field strength and magnetism of single-lanthanide-ionic single molecule magnet , 2007 .

[14]  J. Zyss,et al.  Synthesis, structural studies, theoretical calculations, and linear and nonlinear optical properties of terpyridyl lanthanide complexes: new evidence for the contribution of f electrons to the NLO activity. , 2006, Journal of the American Chemical Society.

[15]  K. Clays,et al.  First hyperpolarizabilities of hexa(ethynyl)benzene derivatives: Effect of conjugation length , 2006 .

[16]  T. Basova,et al.  Synthesis, structure, and spectroscopic and magnetic properties of mesomorphic octakis(hexylthio)-substituted phthalocyanine rare-earth metal sandwich complexes. , 2006, Inorganic chemistry.

[17]  Joseph Zyss,et al.  Lanthanide complexes for second order nonlinear optics: evidence for the direct contribution of f electrons to the quadratic hyperpolarizability. , 2005, Journal of the American Chemical Society.

[18]  E. M. García-Frutos,et al.  Synthesis, Characterisation and Nonlinear Optical Properties of Two‐Dimensional Octupolar Systems Based on Phthalocyanine Compounds , 2005 .

[19]  J. Zyss,et al.  Structural modulation of the dipolar-octupolar contributions to the NLO response in subphthalocyanines. , 2005, The journal of physical chemistry. B.

[20]  Joseph Zyss,et al.  Synthesis, linear, and quadratic-nonlinear optical properties of octupolar D3 and D2d bipyridyl metal complexes. , 2004, Chemistry.

[21]  K. Clays,et al.  Tuning octopolar NLO chromophores: synthesis and spectroscopic characterization of persubstituted 1,3,5-tris(ethynylphenyl)benzenes. , 2004, The Journal of organic chemistry.

[22]  R. Gleiter,et al.  Hexasubstituted donor-acceptor benzenes as nonlinear optically active molecules with multiple charge-transfer transitions. , 2004, Chemistry.

[23]  Jianzhuang Jiang,et al.  Comparative Electrochemical Study of Unsubstituted and Substituted Bis(phthalocyaninato) Rare Earth(III) Complexes , 2004 .

[24]  Richard I. Cooper,et al.  CRYSTALS version 12: software for guided crystal structure analysis , 2003 .

[25]  J. Zyss,et al.  Improved transparency–nonlinearity trade-off with boroxine-based octupolar molecules , 2003 .

[26]  Joseph Zyss,et al.  Propeller-Shaped Octupolar Molecules Derived from Triphenylbenzene for Nonlinear Optics: Synthesis and Optical Studies , 2003 .

[27]  Wen-tao Yu,et al.  Syntheses, structures and second-order nonlinear optical properties of octupolar compounds: 2,4,6-tri-substituted s-triazine , 2003 .

[28]  C. Rovira,et al.  Nonlinear optical properties of open-shell polychlorotriphenylmethyl radicals , 2003 .

[29]  D. Zhao,et al.  Structural studies of the whole series of lanthanide double-decker compounds with mixed 2,3-naphthalocyaninato and octaethylporphyrinato ligands , 2003 .

[30]  K. Kadish,et al.  Electrochemical and spectroscopic investigation of neutral, oxidized and reduced double-decker lutetium(III) phthalocyanines , 2003 .

[31]  M. L'her,et al.  104 – Electrochemistry of Phthalocyanines , 2003 .

[32]  J. Fischer,et al.  105 – Lanthanide Phthalocyanine Complexes , 2003 .

[33]  J. Zyss,et al.  Subphthalocyanines and Subnaphthalocyanines: Nonlinear Quasi-Planar Octupolar Systems with Permanent Polarity , 2002 .

[34]  S. Mukamel,et al.  Three-dimensional nonlinear optical chromophores based on through-space delocalization. , 2002, Journal of the American Chemical Society.

[35]  J. Jiang,et al.  Synthesis, structure, spectroscopic properties, and electrochemistry of rare earth sandwich compounds with mixed 2,3-naphthalocyaninato and octaethylporphyrinato ligands. , 2001, Chemistry.

[36]  J. Zyss,et al.  Supramolecular Octupolar Self‐Ordering Towards Nonlinear Optics , 2001 .

[37]  V. Ahsen,et al.  Synthesis, structure, spectroscopic properties, and magnetic properties of an octakis(alkylthio)-substituted lutetium(III) bisphthalocyanine. , 2001, Inorganic chemistry.

[38]  Y. K. Lee,et al.  1,3,5-Tricyano-2,4,6-tris(vinyl)benzene derivatives with large second-order nonlinear optical properties. , 2001, Journal of the American Chemical Society.

[39]  Ursula Cornelissen,et al.  Conformational Heterogeneity in Diphthalocyaninato(2–)metallates(III) of Sc, Y, In, Sb, Bi, La, Ce, Pr, and Sm , 2001 .

[40]  D. Du,et al.  Synthesis and Spectroscopic Properties of Homoleptic Bis[octakis(octyloxy)phthalocyaninato] Rare Earth(III) Sandwich Complexes , 2000 .

[41]  P. Masson,et al.  Tetra(4-methoxyphenyl)phosphonium Iodide: A Twinned Crystal Built Up with Three-Dimensional Octupolar Nonlinear Optical Chromophores , 2000 .

[42]  J. Nicoud,et al.  A new octupolar material for quadratic nonlinear optics: tris(2,2′-bipyridyl)Zn(II) tetrakis(2-chloro-4-nitrophenolate)Zn(II) , 2000 .

[43]  Koen Clays,et al.  Multiphoton fluorescence free hyperpolarizabilities of subphthalocyanines , 1999 .

[44]  J. Zyss,et al.  New octupolar star-shaped strucures for quadratic nonlinear optics , 1999 .

[45]  Maria Cristina Burla,et al.  SIR97: a new tool for crystal structure determination and refinement , 1999 .

[46]  Koen Clays,et al.  Novel columnar mesogen with octupolar optical nonlinearities: synthesis, mesogenic behavior and multiphoton-fluorescence-free hyperpolarizabilities of subphthalocyanines with long aliphatic chains† , 1999 .

[47]  C. Bräuchle,et al.  Synthesis and Nonlinear Optical Properties of Three‐Dimensional Phosphonium Ion Chromophores , 1998 .

[48]  J. Zyss,et al.  New non-dipolar structures with significant quadratic hyperpoiarizabilites , 1998 .

[49]  T. Ohsaka,et al.  Relationship between the Skew Angle and Interplanar Distance in Four Bis(phthalocyaninato)lanthanide(III) Tetrabutylammonium Salts ([NBun4][LnIIIPc2]; Ln = Nd, Gd, Ho, Lu) , 1996 .

[50]  H. Homborg,et al.  Darstellung und spektroskopische Eigenschaften der gemischtvalenten Di(phthalocyaninato)lanthanide(III) , 1996 .

[51]  Joseph Zyss,et al.  Subphthalocyanines: Novel Targets for Remarkable Second-Order Optical Nonlinearities , 1996 .

[52]  C. Bräuchle,et al.  Determination of the First Hyperpolarizabilities of Octupolar Molecular Ions Made from Symmetric Cyanine Dyes , 1996 .

[53]  C. Bräuchle,et al.  Experimental Determination of the First Hyperpolarizability of New Chiral and Achiral Octupolar Tertiary Amines by Hyper-Rayleigh Scattering , 1996 .

[54]  J. S. Reid,et al.  The Analytical Calculation of Absorption in Multifaceted Crystals , 1995 .

[55]  C. Bräuchle,et al.  Determination of the first hyperpolarizability of four octupolar molecules and their dipolar subunits via hyper-Rayleigh scattering in solution , 1995 .

[56]  P. Das,et al.  First-order hyperpolarizabilities of octupolar aromatic molecules: symmetrically substituted triazines , 1995 .

[57]  T. Vancott,et al.  MAGNETIC CIRCULAR DICHROISM AND ABSORPTION SPECTRA OF LUTETIUM BIS(PHTHALOCYANINE) ISOLATED IN AN ARGON MATRIX , 1995 .

[58]  Joseph Zyss,et al.  Chiral metal complexes with large octupolar optical nonlinearities , 1995, Nature.

[59]  J. Simon,et al.  First hyperpolarizability of organotin compounds with Td symmetry , 1994 .

[60]  Joseph Zyss,et al.  Nonlinear optics in multipolar media: theory and experiments , 1994 .

[61]  Joseph Zyss,et al.  Molecular engineering implications of rotational invariance in quadratic nonlinear optics: From dipolar to octupolar molecules and materials , 1993 .

[62]  Joseph Zyss,et al.  Quadratic nonlinear susceptibility of octupolar chiral ions , 1993 .

[63]  James S. Shirk,et al.  Third-order optical nonlinearities of bis-phthalocyanines , 1992 .

[64]  K. Clays,et al.  Hyper-Rayleigh scattering in solution. , 1991, Physical review letters.

[65]  Joseph G. Young,et al.  Synthesis and characterization of di-disubstituted phthalocyanines , 1990 .

[66]  J. Brédas,et al.  Electronic structure of phthalocyanines : Theoretical investigation of the optical properties of phthalocyanine monomers, dimers, and crystals , 1990 .

[67]  C. A. Hoffman,et al.  Off‐resonant third‐order optical nonlinearities of metal‐substituted phthalocyanines , 1989 .

[68]  H. Konami,et al.  An analysis of paramagnetic shifts in proton NMR spectra of non-radical lanthanide(III)-phthalocyanine sandwich complexes , 1989 .

[69]  J. W. Buchler,et al.  Metal complexes with tetrapyrrole ligands. 50. Redox potentials of sandwichlike metal bis(octaethylporphyrinates) and their correlation with ring-ring distances , 1988 .

[70]  J. Fischer,et al.  Synthesis, structure, and spectroscopic and magnetic properties of lutetium(III) phthalocyanine derivatives: LuPc2.CH2Cl2 and [LuPc(OAc)(H2O)2].H2O.2CH3OH , 1985 .

[71]  M. Tsutsui,et al.  Structure of bis(phthalocyaninato)neodymium(III) , 1980 .

[72]  G. A. Corker,et al.  An Explanation of the Electrochromism of Lutetium Diphthalocyanine , 1979 .

[73]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .