Surface-electrode ion trap with integrated light source

An atomic ion is trapped at the tip of a single-mode optical fiber in a cryogenic (8 K) surface-electrode ion trap. The fiber serves as an integrated source of laser light, which drives the quadrupole qubit transition of $^{88}$Sr$^+$. Through \emph{in situ} translation of the nodal point of the trapping field, the Gaussian beam profile of the fiber output is imaged, and the fiber-ion displacement, in units of the mode waist at the ion, is optimized to within $0.13\pm0.10$ of the mode center despite an initial offset of $3.30\pm0.10$. Fiber-induced charging at $125 \mu$W is observed to be ${\sim}10$ V/m at an ion height of $670 \mu$m, with charging and discharging time constants of $1.6\pm0.3$ s and $4.7\pm0.6$ s respectively. This work is of importance to large-scale, ion-based quantum information processing, where optics integration in surface-electrode designs may be a crucial enabling technology.

[1]  Robert M. Jopson,et al.  System design for large-scale ion trap quantum information processor , 2005, Quantum Inf. Comput..

[2]  I. Chuang,et al.  Surface-electrode point Paul trap , 2010, 1008.1603.

[3]  Herbert Walther,et al.  Quantum optics: The atomic nanoscope , 2001, Nature.

[4]  David J. Wineland,et al.  Minimization of ion micromotion in a Paul trap , 1998 .

[5]  Joan P. Marler,et al.  Collective strong coupling with ion Coulomb crystals in an optical cavity , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[6]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[7]  Y. Colombe,et al.  Efficient fiber optic detection of trapped ion fluorescence. , 2010, Physical review letters.

[8]  Andreas Jechow,et al.  Imaging of trapped ions with a microfabricated optic for quantum information processing. , 2010, Physical review letters.

[9]  B. Blinov,et al.  Efficient fluorescence collection from trapped ions with an integrated spherical mirror , 2009, 0911.4958.

[10]  P. Gill,et al.  Hertz-Level Measurement of the Optical Clock Frequency in a Single 88Sr+ Ion , 2004, Science.

[11]  D Schuster,et al.  Cryogenic ion trapping systems with surface-electrode traps. , 2008, The Review of scientific instruments.

[12]  Patrick Gill,et al.  Controlled photoionization loading of 88Sr+ for precision ion-trap experiments , 2007 .

[13]  Wolfgang Hansel,et al.  Trapped-ion probing of light-induced charging effects on dielectrics , 2010, 1004.4842.

[14]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[15]  T. Schaetz,et al.  Optical trapping of an ion , 2010, 1001.2953.

[16]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[17]  A. Dantan,et al.  Positioning of the rf potential minimum line of a linear Paul trap with micrometer precision , 2009, 0905.3147.