Chromatic number, clique subdivisions, and the conjectures of Hajós and Erdős-Fajtlowicz

For a graph G, let χ(G) denote its chromatic number and σ(G) denote the order of the largest clique subdivision in G. Let H(n) be the maximum of χ(G)=σ(G) over all n-vertex graphs G. A famous conjecture of Hajós from 1961 states that σ(G) ≥ χ(G) for every graph G. That is, H(n)≤1 for all positive integers n. This conjecture was disproved by Catlin in 1979. Erdős and Fajtlowicz further showed by considering a random graph that H(n)≥cn1/2/logn for some absolute constant c>0. In 1981 they conjectured that this bound is tight up to a constant factor in that there is some absolute constant C such that χ(G)=σ(G) ≤ Cn1/2/logn for all n-vertex graphs G. In this paper we prove the Erdős-Fajtlowicz conjecture. The main ingredient in our proof, which might be of independent interest, is an estimate on the order of the largest clique subdivision which one can find in every graph on n vertices with independence number α.

[1]  Noga Alon,et al.  Turán Numbers of Bipartite Graphs and Related Ramsey-Type Questions , 2003, Combinatorics, Probability and Computing.

[2]  W. T. Gowers,et al.  A New Proof of Szemerédi's Theorem for Arithmetic Progressions of Length Four , 1998 .

[3]  Noga Alon,et al.  Explicit Ramsey graphs and orthonormal labelings , 1994, Electron. J. Comb..

[4]  Benny Sudakov,et al.  Density theorems for bipartite graphs and related Ramsey-type results , 2007, Comb..

[5]  P. ERD6S,et al.  ON A RAMSEY TYPE THEOREM , 2001 .

[6]  Paul D. Seymour,et al.  Graph Minors. XIX. Well-quasi-ordering on a surface , 2004, J. Comb. Theory, Ser. B.

[7]  Daniela Kühn,et al.  Topological Minors in Graphs of Large Girth , 2002, J. Comb. Theory, Ser. B.

[8]  G. Dirac A Property of 4-Chromatic Graphs and some Remarks on Critical Graphs , 1952 .

[9]  Paul A. Catlin,et al.  Hajós' graph-coloring conjecture: Variations and counterexamples , 1979, J. Comb. Theory, Ser. B.

[10]  Paul Erdös,et al.  On the conjecture of hajós , 1981, Comb..

[11]  Béla Bollobás,et al.  Topological cliques of random graphs , 1981, J. Comb. Theory, Ser. B.

[12]  Béla Bollobás,et al.  Proof of a Conjecture of Mader, Erdös and Hajnal on Topological Complete Subgraphs , 1998, Eur. J. Comb..

[13]  B. Sudakov,et al.  Pseudo-random Graphs , 2005, math/0503745.

[14]  Benny Sudakov,et al.  Dependent random choice , 2009, Random Struct. Algorithms.

[15]  Benny Sudakov,et al.  A few remarks on Ramsey-Tura'n-type problems , 2003, J. Comb. Theory, Ser. B.

[16]  Alan M. Frieze,et al.  Ramsey games with giants , 2009, Random Struct. Algorithms.

[17]  Béla Bollobás,et al.  The chromatic number of random graphs , 1988, Comb..

[18]  Vojtech Rödl,et al.  On graphs with small Ramsey numbers , 2001, J. Graph Theory.

[19]  János Komlós,et al.  Topological Cliques in Graphs , 1994, Combinatorics, Probability and Computing.

[20]  Benny Sudakov A conjecture of Erdős on graph Ramsey numbers , 2011 .

[21]  Carsten Thomassen,et al.  Some remarks on Hajo's' conjecture , 2005, J. Comb. Theory, Ser. B.