Enhanced Higgs associated production with a top quark pair in the NMSSM with light singlets

A bstractPrecision measurements of the 125 GeV Higgs resonance recently discovered at the LHC have determined that its properties are similar to the ones of the Standard Model (SM) Higgs boson. However, the current uncertainties in the determination of the Higgs boson couplings leave room for significant deviations from the SM expectations. In fact, if one assumes no correlation between the top-quark and gluon couplings to the Higgs, the current global fit to the Higgs data lead to central values of the Higgs couplings to the bottom-quark and the top-quark that are about 2 σ away from the SM predictions. In a previous work, we showed that such a scenario could be realized in the Next to Minimal Supersymmetric extension of the SM (NMSSM), for heavy singlets and light MSSM-like Higgs bosons and scalar top quarks, but for couplings that ruined the perturbative consistency of the theory up to the GUT scale. In this work we show that a perturbative consistent scenario, for somewhat heavier stops, may be obtained in the presence of light singlets. An interesting bonus of this scenario is the possibility of explaining an excess of events observed in CP-even Higgs searches at LEP2.

[1]  S. M. Etesami,et al.  Search for the associated production of the Higgs boson with a top quark pair in multilepton final states with the ATLAS detector , 2015, 1506.05988.

[2]  A. Djouadi The anatomy of electroweak symmetry breaking Tome II: The Higgs bosons in the Minimal Supersymmetric Model , 2005, hep-ph/0503173.

[3]  F. Gabbiani,et al.  A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model , 1996, hep-ph/9604387.

[4]  F. Domingo Update of the flavour-physics constraints in the NMSSM , 2015, 1512.02091.

[5]  R. Frederix,et al.  Accurate predictions for charged Higgs production: Closing the mH±∼mt window , 2016, 1607.05291.

[6]  Cyril Hugonie,et al.  Prompt signals and displaced vertices in sparticle searches for next-to-minimal gauge-mediated supersymmetric models , 2016, 1606.03099.

[7]  A. Djouadi,et al.  Vector-like top/bottom-quark partners and Higgs physics at the LHC , 2015, The European physical journal. C, Particles and fields.

[8]  V. M. Ghete,et al.  Search for excited leptons in ℓℓγ final states in proton-proton collisions at s=13$$ \sqrt{\mathrm{s}}=13 $$ TeV , 2018 .

[9]  S Fiorucci,et al.  Results from a Search for Dark Matter in the Complete LUX Exposure. , 2016, Physical review letters.

[10]  C. Cheung,et al.  Prospects and blind spots for neutralino dark matter , 2012, 1211.4873.

[11]  Ian Low,et al.  Impersonating the Standard Model Higgs boson: alignment without decoupling , 2013, 1310.2248.

[12]  C. Wagner,et al.  Same-sign dilepton excesses and light top squarks , 2015, 1507.01601.

[13]  Ryszard S. Romaniuk,et al.  Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012 .

[14]  G. Moore,et al.  QCD shear viscosity at (almost) NLO , 2018, 1802.09535.

[15]  Roberto Franceschini,et al.  Natural islands for a 125 GeV Higgs in the scale-invariant NMSSM , 2012, 1209.2115.

[16]  J. Gunion,et al.  Higgs bosons at 98 and 125 GeV at LEP and the LHC , 2012, 1210.1976.

[17]  Lukasz Zwalinski,et al.  Search for pair production of Higgs bosons in the b b b b final state using proton-proton collisions at s =13 TeV with the ATLAS detector SEARCH for PAIR PRODUCTION of HIGGS BOSONS in ⋯ M. AABOUD et al. , 2016 .

[18]  B. Allanach,et al.  Light Sparticles from a Light Singlet in Gauge Mediation , 2015, 1502.05836.

[19]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[20]  P. Slavich,et al.  Dynamical μ term in gauge mediation , 2007, 0706.3873.

[21]  B. Bhattacherjee,et al.  Implications of the 98 GeV and 125 GeV Higgs scenarios in nondecoupling supersymmetry with updated ATLAS, CMS, and PLANCK data , 2013, 1305.4020.

[22]  Robert V. Harlander,et al.  SusHi Bento: Beyond NNLO and the heavy- top limit , 2016, Comput. Phys. Commun..

[23]  Tatsuo C. Kobayashi,et al.  Constraining the Higgs sector from False Vacua in the Next-to-Minimal Supersymmetric Standard Model , 2012, 1203.4328.

[24]  V. M. Ghete,et al.  Search for top squark pair production in compressed-mass-spectrum scenarios in proton-proton collisions at s=8 TeV using the αT variable , 2016 .

[25]  Debtosh Chowdhury,et al.  Charge and color breaking constraints in MSSM after the Higgs discovery at LHC , 2013, 1310.1932.

[26]  R. Harr,et al.  Averages of b-hadron, c-hadron, and $$\tau $$τ-lepton properties as of summer 2016 , 2010, 1207.1158.

[27]  D. Morrissey,et al.  Vacuum stability and the MSSM Higgs mass , 2013, 1310.4174.

[28]  Hsin-Chia Cheng,et al.  Same-sign dilepton excesses and vector-like quarks , 2015, 1511.01452.

[29]  C. Wagner,et al.  Enhancing the Higgs associated production with a top quark pair , 2016, 1602.06198.

[30]  A. Semenov,et al.  micrOMEGAs_3: A program for calculating dark matter observables , 2014, Comput. Phys. Commun..

[31]  E. Lunghi,et al.  Inclusive B¯→Xsℓ+ℓ−$$ \overline{B}\to {X}_s{\ell}^{+}{\ell}^{-} $$: complete angular analysis and a thorough study of collinear photons , 2015 .

[32]  Aleph Search for Neutral MSSM Higgs Bosons at LEP , 2006 .

[33]  C. Hugonie,et al.  Constraints from charge and colour breaking minima in the (M+1)SSM , 1999, hep-ph/9902401.

[34]  Cyril Hugonie,et al.  NMHDECAY: A fortran code for the Higgs masses, couplings and decay widths in the NMSSM , 2005 .

[35]  M. Weber,et al.  Physics reach of the XENON1T dark matter experiment. , 2015, 1512.07501.

[36]  U. Ellwanger,et al.  Discovery prospects of a light scalar in the NMSSM , 2015, 1512.04281.

[37]  Cyril Hugonie,et al.  NMHDECAY 2.1: An updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM , 2006, Comput. Phys. Commun..

[38]  C. Savoy,et al.  Phenomenology of supersymmetric models with a singlet , 1997 .

[39]  Howard E. Haber,et al.  Alignment limit of the NMSSM Higgs sector , 2015, 1510.09137.

[40]  Terry Elliott,et al.  The Next-To -Minimal Supersymmetric Standard Model , 1995 .

[41]  M. Olechowski,et al.  Blind spots for neutralino dark matter in the NMSSM , 2015, 1512.02472.

[42]  S. M. Etesami,et al.  Search for the associated production of the Higgs boson with a top quark pair in multilepton final states with the ATLAS detector , 2015, 1506.05988.

[43]  K. Huitu,et al.  Non-standard charged Higgs decay at the LHC in Next-to-Minimal Supersymmetric Standard Model , 2016, Journal of High Energy Physics.

[44]  J. T. Childers,et al.  ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider , 2015, The European Physical Journal. C, Particles and Fields.

[45]  J. Caudron,et al.  Search for supersymmetry at $$\sqrt{s}=13$$s=13 TeV in final states with jets and two same-sign leptons or three leptons with the ATLAS detector , 2016 .

[46]  C. Wagner,et al.  Blind Spots for neutralino Dark Matter in the MSSM with an intermediate m_A , 2014, 1404.0392.

[47]  M. Olechowski,et al.  New regions in the NMSSM with a 125 GeV Higgs , 2013, 1304.5437.

[48]  A. Ealet,et al.  Search for neutral MSSM Higgs bosons at LEP , 2006 .

[49]  F. Taylor,et al.  Search for H → γγ produced in association with top quarks and constraints on the Yukawa coupling between the top quark and the Higgs boson using data taken at 7 TeV and 8 TeV with the ATLAS detector , 2014 .

[50]  E. Lunghi,et al.  Inclusive B -> X_s l^+ l^-: Complete angular analysis and a thorough study of collinear photons , 2015, 1503.04849.

[51]  Robert V. Harlander,et al.  SusHi: A program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM , 2012, Comput. Phys. Commun..

[52]  Hsin-Chia Cheng,et al.  Second stop and sbottom searches with a stealth stop , 2016, 1607.06547.

[53]  A. Dedes,et al.  Complete One-Loop MSSM Predictions for B --> lepton lepton' at the Tevatron and LHC , 2008, 0812.4320.

[54]  W. Porod,et al.  Constraining the Natural MSSM through tunneling to color-breaking vacua at zero and non-zero temperature , 2014, 1405.7376.

[55]  V. M. Ghete,et al.  Search for new physics in events with same-sign dileptons and jets in pp collisions at $ \sqrt{s} $ = 8 TeV , 2013, 1311.6736.

[56]  M. Yamaguchi,et al.  Singlet-doublet Higgs mixing and its implications on the Higgs mass in the PQ-NMSSM , 2012, 1205.2486.

[57]  T. Tuuva,et al.  Search for new physics in events with same-sign dileptons and b-tagged jets in pp collisions at $ \sqrt {s} = 7 $ TeV , 2013 .

[58]  P. Bechtle,et al.  HiggsBounds-4: improved tests of extended Higgs sectors against exclusion bounds from LEP, the Tevatron and the LHC , 2013, 1311.0055.

[59]  R. Frederix,et al.  Large NLO corrections in tt¯ W ± and tt¯ tt¯ hadroproduction from supposedly subleading EW contributions , 2018 .

[60]  A Supersymmetry Primer , 1997, hep-ph/9709356.

[61]  R. Webb,et al.  Results on the Spin-Dependent Scattering of Weakly Interacting Massive Particles on Nucleons from the Run 3 Data of the LUX Experiment. , 2016, Physical review letters.

[62]  Christophe Grojean,et al.  Very boosted Higgs in gluon fusion , 2013, 1312.3317.

[63]  Cms Collaborations Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC $pp$ collision data at $\sqrt{s}=$ 7 and 8 TeV , 2016 .

[64]  J. A. Casas,et al.  Strong constraints on the parameter space of the MSSM from charge and color breaking minima , 1996 .

[65]  S. M. Etesami,et al.  Observation of the rare Bs0 →µ+µ− decay from the combined analysis of CMS and LHCb data , 2014, Nature.

[66]  Jure Zupan,et al.  Higgs after the discovery: a status report , 2012, 1207.1718.

[67]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[68]  J. T. Childers,et al.  Analysis of events with b-jets and a pair of leptons of the same charge in pp collisions at s=8$$ \sqrt{s}=8 $$ TeV with the ATLAS detector , 2015, 1504.04605.