A Divide-and-Conquer Approach to Quad Remeshing

Many natural and man-made objects consist of simple primitives, similar components, and various symmetry structures. This paper presents a divide-and-conquer quadrangulation approach that exploits such global structural information. Given a model represented in triangular mesh, we first segment it into a set of submeshes, and compare them with some predefined quad mesh templates. For the submeshes that are similar to a predefined template, we remesh them as the template up to a number of subdivisions. For the others, we adopt the wave-based quadrangulation technique to remesh them with extensions to preserve symmetric structure and generate compatible quad mesh boundary. To ensure that the individually remeshed submeshes can be seamlessly stitched together, we formulate a mixed-integer optimization problem and design a heuristic solver to optimize the subdivision numbers and the size fields on the submesh boundaries. With this divider-and-conquer quadrangulation framework, we are able to process very large models that are very difficult for the previous techniques. Since the submeshes can be remeshed individually in any order, the remeshing procedure can run in parallel. Experimental results showed that the proposed method can preserve the high-level structures, and process large complex surfaces robustly and efficiently.

[1]  Bruno Lévy,et al.  N-symmetry direction field design , 2008, TOGS.

[2]  David Bommes,et al.  Mixed-integer quadrangulation , 2009, SIGGRAPH '09.

[3]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[4]  Leif Kobbelt,et al.  Direct anisotropic quad-dominant remeshing , 2004, 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings..

[5]  Steven J. Owen,et al.  A Survey of Unstructured Mesh Generation Technology , 1998, IMR.

[6]  T. L. Edwards,et al.  CUBIT mesh generation environment. Volume 1: Users manual , 1994 .

[7]  J. Remacle,et al.  Blossom‐Quad: A non‐uniform quadrilateral mesh generator using a minimum‐cost perfect‐matching algorithm , 2012 .

[8]  Konrad Polthier,et al.  QuadCover ‐ Surface Parameterization using Branched Coverings , 2007, Comput. Graph. Forum.

[9]  Valerio Pascucci,et al.  Spectral surface quadrangulation , 2006, SIGGRAPH '06.

[10]  Eugene Zhang,et al.  Rotational symmetry field design on surfaces , 2007, ACM Trans. Graph..

[11]  Ayellet Tal,et al.  Hierarchical mesh decomposition using fuzzy clustering and cuts , 2003, ACM Trans. Graph..

[12]  Daniele Panozzo,et al.  Practical quad mesh simplification , 2010, Comput. Graph. Forum.

[13]  Denis Zorin,et al.  Anisotropic quadrangulation , 2010, SPM '10.

[14]  Wenping Wang,et al.  Shape optimization of quad mesh elements , 2011, Comput. Graph..

[15]  Michael Garland,et al.  Harmonic functions for quadrilateral remeshing of arbitrary manifolds , 2005, Comput. Aided Geom. Des..

[16]  Pierre Alliez,et al.  Designing quadrangulations with discrete harmonic forms , 2006, SGP '06.

[17]  Elaine Cohen,et al.  Quadrilateral mesh simplification , 2008, SIGGRAPH Asia '08.

[18]  Pierre Alliez,et al.  Periodic global parameterization , 2006, TOGS.

[19]  David Cohen-Steiner,et al.  Restricted delaunay triangulations and normal cycle , 2003, SCG '03.

[20]  Bobby Bodenheimer,et al.  Synthesis and evaluation of linear motion transitions , 2008, TOGS.

[21]  Hujun Bao,et al.  Spectral quadrangulation with orientation and alignment control , 2008, SIGGRAPH Asia '08.

[22]  Hao Zhang,et al.  Robust 3D Shape Correspondence in the Spectral Domain , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[23]  Pierre Alliez,et al.  Anisotropic polygonal remeshing , 2003, ACM Trans. Graph..

[24]  Günther Greiner,et al.  Quadrilateral Remeshing , 2000, VMV.

[25]  Aaron Hertzmann,et al.  Learning 3D mesh segmentation and labeling , 2010, ACM Trans. Graph..

[26]  Shi-Min Hu,et al.  An incremental approach to feature aligned quad dominant remeshing , 2008, SPM '08.

[27]  Daniel Cohen-Or,et al.  Consistent mesh partitioning and skeletonisation using the shape diameter function , 2008, The Visual Computer.

[28]  Leif Kobbelt,et al.  A Robust Two‐Step Procedure for Quad‐Dominant Remeshing , 2006, Comput. Graph. Forum.

[29]  Thomas A. Funkhouser,et al.  A benchmark for 3D mesh segmentation , 2009, ACM Trans. Graph..

[30]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[31]  Scott A. Mitchell,et al.  High Fidelity Interval Assignment , 2000, Int. J. Comput. Geom. Appl..

[32]  David Bommes,et al.  Global Structure Optimization of Quadrilateral Meshes , 2011, Comput. Graph. Forum.

[33]  Hujun Bao,et al.  A wave-based anisotropic quadrangulation method , 2010, ACM Trans. Graph..

[34]  William J. Cook,et al.  Computing Minimum-Weight Perfect Matchings , 1999, INFORMS J. Comput..

[35]  Steven E. Benzley,et al.  Interval Assignment for Volumes with Holes , 1999 .

[36]  D. Zorin,et al.  Feature-aligned T-meshes , 2010, ACM Trans. Graph..

[37]  Cláudio T. Silva,et al.  Template-based quadrilateral meshing , 2011, Comput. Graph..

[38]  T. Funkhouser,et al.  A planar-reflective symmetry transform for 3D shapes , 2006, SIGGRAPH '06.

[39]  Valerio Pascucci,et al.  Inspired quadrangulation , 2011, Comput. Aided Des..